Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T01:00:44.537Z Has data issue: false hasContentIssue false

Influence of Thermal Gravitational Convection on Solidi Fication Processes

Published online by Cambridge University Press:  26 February 2011

Hans M. Tensi
Affiliation:
Technische Universität München Institut für Werkstoff- und Verarbeitungswissenschaften, D-8OOO München 2, Federal Republic of Germany
Joachim J. Schmidt
Affiliation:
now MBB, Hubschrauber u. Flugzeuge, 6900 Augsburg 1
Get access

Abstract

The aim of these experiments in the Gradient Furnace with Quenching device (GFQ) during the German D-1 Mission was to study the influence of thermal convection on

– the diffusion in the melt ahead of the solidification front in an AlCu-alloy

– the stability of a smooth solidification front in an Al-Cualloy and

– the morphology of the solidification front in an AlSi-alloy

during the directional solidification of the binary alloys AlCu with 0.3 wght.-% Cu and AlSi with 7.0 wght.-% Si. Altogether five samples had been successfully processed during the D1-Mission. After getting the complete values from the process data (above all the velocity of the solidification front and the temperature gradient) reference experiments were made in the same GFQ under lg-conditions.

Additional experiments under lg with a transparent fluid were done to obtain information about the thermal convection in a cylindrical cell while measuring temperature distribution at the same time.

A first result having the same crystallization condition is the more than twice thicker diffusion boundary layer in AlCu 0,3-specimen than in the lg-reference specimen. The diffusion coefficient and the dendritic morphology are to be determined. The evaluation of all specimens (flight- and lg-samples) is not finished in the moment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Tensi, H.M., Fuchs, H., Harmathy, P.F. and Schmidt, J. Unidirectional solidification with quenching of theresidual melt in spacePart I: Existing solidification apparatus Aluminium 60(1984) E 443446 Part II: Application of experimental equipment Aluminium 60(1984) E 526–528Google Scholar
2) Tensi, H.M. and Harmathy, P. Untersuchung des Diffusionskoeffizienten in füssiger Phaseim Nahbereich einer wandernden Erstarrungsfront; TechnischeUniversität München, 1984 (200 Seiten), AbschluBberichtTeil I des Forschungsvorhabens 01 QV 030- ZA/SN/SLN 8002 0.2an das BMFT, Bonn, and Tensi, H.M. and P. Harmathy Influence of thermal convection in the melt of cylindrical unidirectionally solidified samples on the concentration profile a head of the solidification front demnächst in Z. MetallkdeGoogle Scholar
3) Tensi, H.M. and Kohlhaas, G.Diffusions- u. konvektionsgesteuerter Stofftransport vor der Erstarrungsfront binä r legierter Metalle”, Z. Metallkde. 67 (1976) 493497 Google Scholar
4) Tensi, H.M. and Kohlhaas, G.Beeinflussung der Seigerung in zonengeschmolzenen, binä r legierten Metallen durch konvektionsgesteuerten Stofftransport”, Z. Metallkde. 67 (1976) 498502 Google Scholar
5) Rutter, J.W. and Chalmers, B. J. Canadian Phys. 31 (1953) 15 Google Scholar
6) Tiller, W.A., Jackson, K.A., Rutter, J.W. and Chalmers, B. Acta Met. 1 (1953) 428 Google Scholar
7) Langbein, D., BATTELLE e.V., Frankfurt schriftliche Mitteilung vom 13.3.1980 Google Scholar