Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T07:06:29.271Z Has data issue: false hasContentIssue false

Influence of Thermal Treatments on the Chemistry and Self-Assembly of Ge Nanoparticles on SiO2 Surfaces

Published online by Cambridge University Press:  01 February 2011

Scott K. Stanley
Affiliation:
Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
Shawn S. Coffee
Affiliation:
Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
John G. Ekerdt
Affiliation:
Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
Get access

Abstract

GeH4 is thermally cracked over a hot filament depositing 0.7–15 ML Ge onto 2–7 nm SiO2/Si(100) at substrate temperatures of 300–970 K. Ge, GeHx, GeO, and GeO2 desorption is monitored through temperature programmed desorption in the temperature range 300–1000 K. Ge bonding changes are analyzed during annealing from 300–1000 K with X-ray photoelectron spectroscopy (XPS). Low temperature desorption features are attributed to GeO and GeH4. No GeO2 desorption is observed, but GeO2 decomposition to Ge through high temperature pathways is seen above 700 K. Germanium oxidization results from Ge etching of the oxide substrate, which is demonstrated through XPS. Ge nanoparticle formation on SiO2 is demonstrated using the agglomeration process. With these results, explanations for the difficulties of conventional chemical vapor deposition to produce Ge nanocrystals on SiO2 surfaces are proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Choi, W. K., Chim, W. K., Heng, C. L., Teo, L. W., Ho, V., Ng, V., Antoniadis, D. A., Fitzgerald, E. A., Appl. Phys. Lett. 80 (2002) 2014.Google Scholar
2. Hanafi, H. I., Tiwari, S., Khan, I., IEEE T. Electron. Dev. 43 (1996) 1553.Google Scholar
3. von Borany, J., Grötzschel, R., Heinig, K. H., Markwitz, A., Schmidt, B., Skorupa, W., Thees, H. J., Solid-State Electron. 43 (1999) 1159.Google Scholar
4. Heinig, K. H., Schmidt, B., Markwitz, A., Grötzschel, R., Strobel, M., Oswald, S., Nucl. Instrum. Meth. B 148 (1999) 969.Google Scholar
5. Li, W. T., Bulla, D. A. P., Charles, C., Boswell, R., Love, J., Luther-Davies, B., Thin Solid Films, 419 (2002) 82.Google Scholar
6. Lee, J. W., Kim, S. S., Lee, B. T., Moon, J. H., Appl. Surf. Sci. 228 (2004) 271.Google Scholar
7. Wakayama, Y., Tagami, T., Tanaka, S., Thin Solid Films 350 (1999) 300.Google Scholar
8. Zacharias, M., Streitenberger, P., Phys. Rev. B 62 (2000) 8391.Google Scholar
9. Kobayashi, T., Endoh, T., Fukuda, H., Nomura, S., Sakai, A., Ueda, Y., Appl. Phys. Lett. 71 (1997) 1195.Google Scholar
10. Klimenkov, M., Matz, W., Nepijko, S. A., Lehmann, M., Nucl. Instrum. Meth. B 179 (2001) 209.Google Scholar
11. Fitting, H. J., Barfels, T., Trukhin, A. N., Schmidt, B., Gulans, A., A. von Czarnowski, J. Non-Cryst. Solids 303 (2002) 218.Google Scholar
12. von Borany, J., Grötzschel, R., Heinig, K. H., Markwitz, A., Matz, W., Schmidt, B., Skorupa, W., Appl. Phys. Lett. 71 (1997) 3215.Google Scholar
13. Shklyaev, A. A., Ichikawa, M., Surf. Sci. 514 (2002) 19.Google Scholar
14. Fujii, M., Hayashi, S., Yamamoto, K., Jpn. J. Appl. Phys.1 30 (1991) 687.Google Scholar
15. Wang, Y. Y., Yang, Y. H., Guo, Y. P., Yue, J. S., Gan, R. J., Mater. Lett. 29 (1996) 159.Google Scholar
16. Baron, T., Pelissier, B., Perniola, L., Mazen, F., Hartmann, J. M., Rolland, G., Appl. Phys. Lett. 83 (2003) 1444.Google Scholar
17. Darma, Y., Murakami, H., Miyazaki, S., Appl. Surf. Sci. 224 (2004) 156.Google Scholar
18. Kim, D. W., Kim, Y. H., Chen, X. D., Lee, C. H., Song, S. C., Prins, F. E., Kwong, D. L., Banerjee, S., J. Vac. Sci. Technol. B 19 (2001) 1104.Google Scholar
19. Leach, W. T., Zhu, J. H., Ekerdt, J. G., J. Cryst. Growth 243 (2002) 30.Google Scholar
20. Leach, W. T., Zhu, J. H., Ekerdt, J. G., J. Cryst.Growth 240 (2002) 415.Google Scholar
21. Tabet, N. A., Salim, M. A., Al-Oteibi, A. L., J. Electron. Spectrosc. 103 (1999) 233.Google Scholar
22. Prabhakaran, K., Ogino, T., Surf. Sci. 325 (1995) 263.Google Scholar
23. Liou, H. K., Mei, P., Gennser, U., Yang, E. S., Appl. Phys. Lett. 59 (1991) 1200.Google Scholar
24. Prabhakaran, K., Maeda, F., Watanabe, Y., Ogino, T., Appl. Phys. Lett. 76 (2000) 2244.Google Scholar
25. Zhong, Y. L., Öztürk, M. C., Grider, D. T., Wortman, J. J., Littlejohn, M. A., Appl. Phys. Lett. 57 (1990) 2092.Google Scholar
26. Prabhakaran, K., Nishioka, T., Sumitomo, K., Kobayashi, Y., Ogino, T., Appl. Phys. Lett. 62 (1993) 864.Google Scholar
27. Dutta, A. K., Appl. Phys. Lett. 68 (1996) 1189.Google Scholar
28. Wang, C. L., Unnikrishnan, S., Kim, B. Y., Kwong, D. L., Tasch, A. F., J. Electrochem. Soc. 143 (1996) 2387.Google Scholar
29. Ishii, H., Takahashi, Y., Murota, J., Appl. Phys. Lett. 47 (1985) 863.Google Scholar