Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T08:05:18.740Z Has data issue: false hasContentIssue false

InGaAs/GaAsSb Heterostructures: Aluminum-Free Intersubband Devices

Published online by Cambridge University Press:  31 January 2011

Michele Nobile
Affiliation:
michele.nobile@tuwien.ac.at, Institute for Solid State Electronics, Vienna University of Technology, Center for Micro-and Nanostructures, Vienna, Austria
Gottfried Strasser
Affiliation:
gs48@buffalo.edu
Hermann Detz
Affiliation:
hermann.detz@tuwien.ac.at, Institute for Solid State Electronics, Vienna University of Technology, Center for Micro-and Nanostructures, Vienna, Austria
Elvis Mujagic
Affiliation:
elvis.mujagic@tuwien.ac.at, Institute for Solid State Electronics, Vienna University of Technology, Center for Micro-and Nanostructures, Vienna, Austria
Aaron Andrews
Affiliation:
aaron.maxwell.andrews@tuwien.ac.at, Institute for Solid State Electronics, Vienna University of Technology, Center for Micro-and Nanostructures, Vienna, Austria
Pavel Klang
Affiliation:
pavel.klang@tuwien.ac.at, Institute for Solid State Electronics, Vienna University of Technology, Center for Micro-and Nanostructures, Vienna, Austria
Werner Schrenk
Affiliation:
werner.schrenk@tuwien.ac.at, Institute for Solid State Electronics, Vienna University of Technology, Center for Micro-and Nanostructures, Vienna, Austria
Get access

Abstract

An experimental study on mid-infrared intersubband absorption in InGaAs/GaAsSb multiple quantum wells grown lattice-matched to InP substrates by molecular beam epitaxy is presented. Intersubband absorption in a broad wavelength region (5.8 - 11.6 μm) is observed in multiple quantum well samples with well widths ranging between 4.5 and 12 nm. A conduction band offset at the InGaAs/GaAsSb heterointerface of 360 meV gives an excellent agreement between the theoretically calculated ISB transition energies and the Fourier-transform infrared spectroscopy measurements over the whole range of well widths under investigation. Two kinds of intersubband devices based on the InGaAs/GaAsSb material system are presented: a quantum well infrared photodetector operating at a wavelength of 5.6μm and an aluminum-free quantum cascade laser. The presented quantum cascade laser emits at a wavelength of 11.3 μm, with a threshold current density of 1.7 kA/cm2 at 78 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Faist, J., Capasso, F., Sivco, D. L., Sirtori, C., Hutchinson, A. L. and Cho, A. Y., Science 264, 553 (1994)10.1126/science.264.5158.553Google Scholar
2. Schneider, H. and Liu, H. C., Quantum Well Infrared Photodetectors: Physics and Applications (Springer, Berlin, 2007)Google Scholar
3. Wang, Q J, Pflügl, C., Diehl, L., Capasso, F., Edamura, T., Furuta, S., Yamanishi, M. and Kan, H., Appl. Phys. Lett. 94, 011103 (2009)10.1063/1.3062981Google Scholar
4. Aellen, T., Beck, M., Hoyler, N., Giovannini, M., Gini, E. and Faist, J., J. Appl. Phys. 100, 043101 (2006)10.1063/1.2234804Google Scholar
5. Sirtori, C., Kruck, P., Barbieri, S., Collot, P., Nagle, J., Beck, M., Faist, J. and Oesterle, U., Appl. Phys. Lett. 73, 34863488 (1998)10.1063/1.122812Google Scholar
6. Pflügl, C., Schrenk, W., Anders, S., Strasser, G., Becker, C., Sirtori, C., Bonetti, Y. and Muller, A., Appl. Phys. Lett. 83, 4698 (2003)10.1063/1.1633021Google Scholar
7. Faist, J., Capasso, F., Sivco, D. L., Hutchinson, A. L., Chu, Sung-Nee G. and Cho, A. Y., Appl. Phys. Lett. 72, 680 (1998)10.1063/1.120843Google Scholar
8. Devenson, J., Cathabard, O., Teissier, R. and Baranov, A. N., Appl. Phys. Lett. 91, 251102 (2007)10.1063/1.2825284Google Scholar
9. Revin, D. G., Wilson, L. R., Zibick, E. A., Green, R.P., Cockburn, J. W., Steer, M. J., Airey, M. J. and Hopkinson, M., Appl. Phys. Lett., 85, pp. 39923994 (2004)10.1063/1.1814798Google Scholar
10. Kohler, R., Tredicucci, A., Beltram, F., Beere, H. E., Linfield, E. H., Davis, A. G., Ritchie, D. A., Iotti, R. C. and Rossi, F., Nature (London) 417, 156 (2002)10.1038/417156aGoogle Scholar
11. Lassaad, A., Scalari, G., Hoyler, N., Giovannini, M. and Faist, J., Appl. Phys. Lett., 87, 141107 (2005)Google Scholar
12. Sirtori, C., Capasso, F., Faist, J. and Scandolo, S., Phys. Rev. B, 50, pp. 86638674 (1994)10.1103/PhysRevB.50.8663Google Scholar
13. Benveniste, E., Vasanelli, A., Delteil, A., Devenson, J., Teissier, R., Baranov, A., Andrews, A. M., Strasser, G., Sagnes, I. and Sirtori, C., Appl. Phys. Lett., 93, 131108 (2008)10.1063/1.2991447Google Scholar
14. Li, B. S., Shen, A., Charles, W. O., Zhang, Q. and Tamargo, M. C., Appl. Phys. Lett. 92, 261104 (2008)10.1063/1.2943660Google Scholar
15. Lu, H., Shen, A., Tamargo, M. C., Song, C. Y., Liu, H. C. and Muñoz, M., Appl. Phys. Lett. 89, 131903 (2006)10.1063/1.2354578Google Scholar
16. Hu, J., Xu, X. G., Stotz, J. A. H., Watkins, S. P., Curzon, A. E., Thewalt, M. L. W., Matine, N. and Bolognesi, C. R., Appl. Phys. Lett. 73, 2799 (1998)10.1063/1.122594Google Scholar
17. Nobile, M., Detz, H., Mujagic, E., Andrews, A. M., Klang, P., Schrenk, W. and Strasser, G., Appl. Phys. Lett., 95, 041102 (2009)10.1063/1.3189703Google Scholar
18. Devlin, P., Heravi, H. M. and Woolley, J. C., Can. J. Phys., 59, pp. 939944 (1981)10.1139/p81-123Google Scholar
19. Liu, H. C. and Capasso, F., Intersubband Transitions in Quantum Wells: Physics and Device Applications I (Academic, San Diego, 2000), Chap. 1Google Scholar
20. Nobile, M., Klang, P., Mujagic, E., Detz, H., Andrews, A. M., Schrenk, W. and Strasser, G., Electronics Letters, vol. 45, no. 20, pp. 10311033 (2009)10.1049/el.2009.1995Google Scholar
21. Moreau, V., Bahriz, M., Colombelli, R., Perahia, R., Painter, O., Wilson, L. R. and Krysa, A. B., Optic Express, 15, pp. 1486114869 (2007)10.1364/OE.15.014861Google Scholar
22. Hedin, L. and Lundqvist, B. I., J. Phys. C 4, 2064 (1971)10.1088/0022-3719/4/14/022Google Scholar
23. Bloss, W. L., J. Appl. Phys. 66, 3639 (1989)10.1063/1.344073Google Scholar
24. Vurgaftman, I., Meyer, J. R. and Ram-Mohan, L. R., J. Appl. Phys. 89, 5815 (2001)10.1063/1.1368156Google Scholar