Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T07:19:13.715Z Has data issue: false hasContentIssue false

Integrated Optics Utilizing GaN-Based Layers on Silicon Substrates

Published online by Cambridge University Press:  01 February 2011

Armand Rosenberg
Affiliation:
armand.rosenberg@nrl.navy.mil, Naval Research Laboratory, Optical Sciences Division, 4555 Overlook Ave. SW, Washington, DC, 20375, United States, 202-767-9522
Michael A. Mastro
Affiliation:
michael.mastro@nrl.navy.mil, Naval Research Laboratory, Washington, DC, 20375, United States
Joshua D. Caldwell
Affiliation:
joshua.caldwell@nrl.navy.mi, Naval Research Laboratory, Washington, DC, 20375, United States
Ronald T. Holm
Affiliation:
ron.holm@nrl.navy.mil, Naval Research Laboratory, Washington, DC, 20375, United States
Richard L. Henry
Affiliation:
rich.henry@nrl.navy.mil, Naval Research Laboratory, Washington, DC, 20375, United States
Charles R. Eddy
Affiliation:
chip.eddy@nrl.navy.mil, Naval Research Laboratory, Washington, DC, 20375, United States
Konrad Bussmann
Affiliation:
konrad.bussmann@nrl.navy.mil, Naval Research Laboratory, Washington, DC, 20375, United States
Mijin Kim
Affiliation:
mijin.kim@nrl.navy.mil, Naval Research Laboratory, Washington, DC, 20375, United States
Get access

Abstract

It is now apparent that future generations of fast electronics and compact sensors may need to rely increasingly on integrated optical components. But integration of electronics and photonics in today's IC's is challenging. Silicon, the ubiquitous electronic material, is neither ideally suited for most photonic functions nor readily integrated with most of the common photonic materials, such as GaAs. The approach we describe here relies on GaN-based films, which can be grown directly on silicon substrates and hence can be potentially integrated with state-of-the-art Si-based electronics. We have demonstrated the fabrication of GaN structures on silicon wafers ranging in overall size from sub-micron to several millimeters, all containing highly accurate individual features on the nm scale. As proof of concept, we have fabricated GaN optical waveguides and photonic crystals containing optical cavities by patterning GaN membranes grown directly on Si wafers. Our optical cavities were designed to have resonant modes within the spectral region of the broad defect-induced luminescence of GaN. We have measured sharp resonant features associated with these cavities by optically pumping above the GaN band edge, and have compared the data to numerical simulations of the spectra. Our results to date demonstrate the feasibility of fabricating high-quality GaN photonic structures directly on Si wafers, thereby providing a possible path to achieving true integration of electronics and photonics in future generations of IC's.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rosenberg, A. Carter, Michael W., Casey, J.A. Mijin Kim, Ronald Holm, T. Henry, Richard L., Eddy, Charles R., Shamamian, V.A. and Bussmann, K. Optics Express 13, 6564 (2005).Google Scholar
2. Meier, Cedrik, Hennessy, Kevin, Haberer, Elaine D., Sharma, Rajat, Choi, Yong-Seck, McGroddy, Kelly, Keller, Stacia, DenBaars, Steven P., Nakamura, Shuji, and Hu, Evelyn L., Appl. Phys. Lett. 88, 31111 (2006).Google Scholar
3. Coquillat, D. Torres, J. Peyrade, D. Legros, R. Lascaray, J.P., Yerville, M. Le Vassord, Centeno, E. Cassagne, D. Albert, J.P. Chen, Y. and Rue, R.M. De La, Optics Express 12, 1097 (2004).Google Scholar
4. Reiher, A. Bläsing, J., Dadgar, A. Diez, A. and Krost, A. J. Cryst. Growth 248, 563 (2003).Google Scholar
5. Rosenberg, A. Bussmann, K. Kim, Mijin, Carter, Michael W. Mastro, M. A. Holm, Ronald T. Henry, Richard L. Caldwell, Joshua D. and Eddy, Charles R. Jr., J. Vac. Sci. Technol. B 25, 721 (2007).Google Scholar
6. Joblet, S. Semond, F. Natali, F. Vennegues, P. Laugt, M. Cordier, Y. and Massies, J. Phys. Stat. Sol. (c), 2-7, 2187 (2005).Google Scholar
7. Mastro, M.A. Eddy, C.R. Jr., Gaskill, D.K. Bassim, N.D. Casey, J. Rosenberg, A. Holm, R.T. Henry, R.L. and Twigg, M.E. J. Crystal Growth, 287, 610 (2006); M.A. Mastro, R.T. Holm, N.D. Bassim, C.R. Eddy Jr., D.K. Gaskill, R.L. Henry and M.E. Twigg Appl. Phys. Lett., 87, 241103 (2005).Google Scholar
8. Eddy, C. R. Jr., Holm, R. T. Henry, R. L. Culbertson, J. C. and Twigg, M. E. J. Electron. Mater. 34, 1187 (2005).Google Scholar
9. Hsu, David S.Y. Kim, Chul Soo, Eddy, Charles R. Jr., Holm, Ronald T. Henry, Richard L. Casey, J.A. Shamamian, V.A. and Rosenberg, A. J. Vac. Sci. Technol. B 23, 1611 (2005).Google Scholar
10. Yang, Z. Wang, R.N. Jia, S. Wang, D. Zhang, B.S. Lau, K.M. and Chen, K.J. Appl. Phys. Lett. 88, 41913 (2006).Google Scholar
11. Stievater, T.H. Rabinovich, W.S. Park, D. Khurgin, J.B. Kanakaraju, S. and C.Richardson, J.K. Optics Express 16, 2621 (2008).Google Scholar
12. Kim, Se-Heon, Kim, Guk-Hyun, Kim, Sun-Kyung, Park, Hong-Gyu, and Lee, Yong-Hee, and Kim, Sung-Bock, J. Appl. Phys. 95, 411 (2004).Google Scholar
13. Krost, A. and Dadgar, A. Phys. Stat. Sol. (a), 194, 361 (2002).Google Scholar
14. Mastro, M.A. Eddy, C. R. Jr., Bassim, N. D. Twigg, M. E. Henry, R. L. and Holm, R. T. Edwards, A. Sol. Stat. Elec., 49-2, 251 (2005).Google Scholar
15. Mastro, Michael A. Holm, Ron T. Bassim, Nabil D. Eddy, Charles R. Jr., Henry, Rich L. Twigg, Mark E. and Rosenberg, Armand, Jpn. J. Appl. Phys. 31, L814 (2006).Google Scholar