Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T14:26:27.462Z Has data issue: false hasContentIssue false

Intercalation Of Layered V2O5 Xerogel With Polymers

Published online by Cambridge University Press:  15 February 2011

M. G. Kanatzidis
Affiliation:
Department of Chemistry and the Center of Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824
C.-G. Wu
Affiliation:
Department of Chemistry and the Center of Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824
Y.-J. Liu
Affiliation:
Department of Chemistry and the Center of Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824
D. C. DeGroot
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208
J. L. Schindler
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208
H. O. Marcy
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208
C. R. Kannewurf
Affiliation:
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

The intercalation properties of the layered V2O5 xerogel towards conductive polymers are described. The systems intercalated with polyaniline show post-intercalative redox polymerization caused by ambient oxygen to give products with enhanced conductivity. For the first time the role of oxygen in this intercalation reaction has been unequivocally identified. We also report the synthesis and some properties of a new intercalation compound in which the guest species is poly(ethylene oxide), an insulating polymer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) (a) Lemerle, J.; Nejem, L.; Lefebvre, J. J. Inorg. Nucl. Chem. 1980, 42. 1720 (b) Bullot, J.; Gallais, O.; Gauthier, M.; Livage, J. Appl. Phys. Lent. 1980, 3A, 986–988. Sanchez, C.; Babonneau, F.; Morineau, R.; Livage, J.;Bullot, J. Philos. Mag. [Part] B 1983,47., 279–290.Google Scholar
2) (a) Legendre, J.-J.; Livage, J. J. Colloid Interface Sci. 1983, 94., 7583. (b) Legendre, J.J.; Aldebert, P.; Baffler, N.; Livage, J. J. Colloid Interface Sci. 1983, 94, 84–89. (c) Aldebert, P.; Haesslin, H.W.; Baffier, N.; Livage, J. J. Colloid Interface Sc. 1983, 9, 478–483. (d) Gharbi, N.; Sanchez, C.; Livage, J.; Lemerle, J.; Nejem, L.; Lefebvre, J. Inorg. Chem. 1982, 2I. 2758–2765.CrossRefGoogle Scholar
3) (a) Aldebert, P.; Baffler, N.; Legendre, J.-J.; Livage, J. Revue Chim. Min. 1982, 19, 485495. (b) Lemordant, D.; Bouhaouss, A.; Aldebert, P.; Baffier, N. J. de Chim. Physique 1986, la, 105–113. (c) Aldebert, P.; Baffier, N.; Gharbi, N.; Livage, J. Mat. Res. Bull. 1981,.1. 949–955.Google Scholar
4) Livage, J. J. Solid State Chem. 1986, B4, 322330 Google Scholar
5) Bouhaouss, A.; Aldebert, P. Mat. Res. Bull 1983, 18, 12471256 Google Scholar
6) (a) Masbah, H.; Tinet, D.; Crespin, M.; Erre, R.; Setton, R.; Van Damme, H. J. Chem. Soc. Chem. Commun. 1985, 935936 (b) Van Damme, H.; Lettellier, M.; Tinet, D.; Kihal, B.; Erre, R. Mat. Res. Bull. 1984,.1., 1635–1642 (c) Babonneau, F.; Barboux, P.; Josien, F.A.; Livage, J. J. de Chim. Phys. 1985, 0a, 761–766 (d) Murphy, D.W.; Christian, P.A.; DiSalvo, F.J.; Waszczak, J.V. Inorg. Chem. 1979, 11, 2800–2803 (e) Wu, C.-G.; Kanatzidis, M.G.; Marcy, H.O.; Kannewurf, C.R. manuscript in preparation.Google Scholar
7) (a) Kanatzidis, M.G.; Wu, C.-G.; Marcy, H.O.; Kannewurf, C.R. J. Am. Chem. Soc. 1989, 111, 41394141 (b) Wu, C.-G.; Kanatzidis, M.G.; Marcy, H.O.; DeGroot, D.C.; Kannewurf, C.R. Polym. Mat. Sci. Eng. 1989, fit 969–973. (c) Wu, C.-G.; Kanatzidis, M.G.; Marcy, H.O.; DeGroot, D.C.; Kannewurf, C.R. NATO Advanced Study Institute ”Lower Dimensional Systems and Molecular Devices” R. M. Metzger, Ed. Plenum Press, Inc. 1991, 427–434 (d) C.-G. Wu and M. G. Kanatzidis. Symposium on ”Solid State Ionics Ir G. Nazri, R. A. Huggins, D. F. Shriver, M. Balkanski Editors. MRS Symp. Proc. 1991,210, 429–442Google Scholar
8) Kanatzidis, M. G., Wu, C.-G., Marcy, H. O.,DeGroot, D. C.,Kannewurf, C. R.,Kostikas, A. and Papaefthymiou, V. Advanced Materials, 1990, 2, 364366 Google Scholar
9) Javadi, H. H. S.; Cromack, K. R.; MacDiarmid, A. G.; Epstein, A. J. Phys. Rev. B, 1989,39, 35793584 Google Scholar
10) (a) Ratner, M. A.; Shriver, D. F. Chem. Rev. 1988, 88 109124 (b) Solid State Ionics, MRS Symp. Proc. 1989, Vol 135 G. Nazri, R. A. Huggins, D. F. Shriver Editors. (c) Solid State Ionics II G. Nazri, R. A. Huggins, D. F. Shriver, M. Balkanski Editors. MRS Symp. Proc.1991, Vol 210 (d) Armand, M. B.; Chabango, J. M.; Duclot, M. J. in Fast Ion Transport in Solids, P. Vashista, J. N. Mundi and G. K. Shenoy Editors (Noth Holland, New York, 1979), p 131 (e) Polymer Electrolyte Reviews Vol 1&2, J. R. McCallum and C. A. Vincent Editors (Elsevier Applied Science, London and New York, 1987 ans 1989) (f) Armand, M. Ann. Rev. Mat. Sci. 1986, 16, 245Google Scholar
11) Livage, J. Chem. Mater. 1991, in pressGoogle Scholar
12) Liu, Y.-J.; Wu, C.-G.; Kanatzidis, M.G.; DeGroot, D.C.; Schindler, J.; Kannewurf, C.R. to be submitted for publicationGoogle Scholar