Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T06:50:30.618Z Has data issue: false hasContentIssue false

Interface Passivation in Amorphous Silicon TFTs by Various Gate Dielectric Materials

Published online by Cambridge University Press:  26 February 2011

R. C. Fryea
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
C. C. Wong
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
C. Kornfeld
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

We have used photothermal deflection spectroscopy to examine deep gap absorption in amorphous silicon films deposited on silicon oxide and silicon nitride. Variations in the interface state density deduced from PDS correlate well with the performance characteristics of thin-film transistors. We have demonstrated processes which degrade the interfacial abruptness also increase the interface state density. In transistors this leads to a degradation in device stability. We found devices with oxide gates to be more stable and show lower interface state density than devices with nitride gates for a specific set of deposition conditions. The correspondence between deep gap absorption and transistor characteristics shows that PDS is a valuable technique for characterizing and optimizing fabrication processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jackson, W. and Amer, N., Phys. Rev. B 25, 5559 (1982).Google Scholar
2. Jackson, W. B., Biegelsen, D. K., Nemanich, R. J. and Knights, J. C., Appl. Phys. Lett. 42, 105 (1982).Google Scholar
3. Frye, R., Kumler, J. and Wong, C., Appl. Phys. Lett. 50, 101 (1987).Google Scholar
4. Tuan, H. C., Thompson, M. J., Johnson, N. M. and Lujan, R. A., IEEE Elec. Dev. Lett. EDL–3, 357 (1982).Google Scholar
5. Powell, M. J., Mat. Res. Soc. Symp. Proc. 33, 259 (1984).Google Scholar
6. Chartier, E., Szydlo, N., Boulitrop, F., Proust, N. and Magariho, J., Mat. Res. Soc. Symp. Proc, 53, 453 (1986).Google Scholar
7. Street, R. A. and Thompson, M. J., Appl. Phys. Lett., 45, 769 (1984).Google Scholar
8. Smith, Z. E., Chu, V., Shepard, K., Aljishi, S., Slobodin, D., Kolodzey, J. and Wagner, S., to be published, Applied Phys. Lett., 25 May (1987).Google Scholar
9. Matsumura, M., Kuno, S. I. and Uchida, Y., J. De Physique C 4, 519 (1981).Google Scholar
10. Powell, M. J. and Orton, J. W., Appl. Phys. Lett. 43, 171 (1984).Google Scholar
11. Ast, D., IEEE Trans. Elec. Dev. ED–30, 532 (1983).Google Scholar
12. MacKenzie, K. D., Snell, A. J., French, I., LeComber, P. G. and Spear, W. E., Appl. Phys. A 31, 87 (1983).Google Scholar
13. Powell, M. J., Appl. Phys. Lett. 43, 597 (1983).Google Scholar