Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T04:08:16.246Z Has data issue: false hasContentIssue false

Internal Structure of Diamond Nanocrystals by Modeling and PDF Analysis

Published online by Cambridge University Press:  18 July 2013

S. Stelmakh
Affiliation:
Institute of High Pressure Physics PAS, ul. Sokolowska 29/37, 01-142 Warsaw, Poland
W. Palosz
Affiliation:
Brimrose Corporation, Sparks, Md 21152, USA
S. Gierlotka
Affiliation:
Institute of High Pressure Physics PAS, ul. Sokolowska 29/37, 01-142 Warsaw, Poland
K. Skrobas
Affiliation:
Institute of High Pressure Physics PAS, ul. Sokolowska 29/37, 01-142 Warsaw, Poland
B. Palosz
Affiliation:
Institute of High Pressure Physics PAS, ul. Sokolowska 29/37, 01-142 Warsaw, Poland
Get access

Abstract

The structure of nanocrystalline diamond was approximated by spherical nanograins assuming that the grain core with a perfect crystal lattice is surrounded by a sequence of shells with (essentially) identical atomic architecture but with altered density. We call such a model a nanocrystal with density modulated waves. To examine the effect of density modulation present in nanograins, we built atomistic models of nanodiamond grains and compared the average values of inter-atomic distances calculated for the grains with density waves to those calculated for grains with the perfect, diamond crystal lattice. We show that the atomic structure of nanodiamond can be best described by a model where, between the inner core and the surface layer, three density waves with intermittent compressive and tensile strains exist. The sequence of the density waves is preserved in all examined nanodiamond samples without regard to chemical treatment and vacuum annealing (at up to 1200°C).

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aleksenskii, I.E., Baidakova, M.V., Vul', A.Ya., Siklickii, V.I., Phys. Solid State, 41 (1999) 668.CrossRefGoogle Scholar
Barnard, A.S., Russo, S.P., Snook, I.K., Phys. Rev., B68 (2003) 073406.CrossRefGoogle Scholar
Zhao, D.S., Zhao, M., Jiang, Q., Diamond and Related Materials, 11 (2002) 234.CrossRefGoogle Scholar
Pantea, C., Zhang, J., Qian, J., Zhao, Y., Migliori, A., Grzanka, E., Palosz, B., Wang, Y., Zerda, T.W., Liu, H., Ding, Y., Stephens, P.W., Botez, C.E., NSTI Nanotech 2006, Boston, Masssachusetts, May 7-11, 2006.Google Scholar
Shames, A.I., Panich, A.M., Kempinski, W., Aleksenskii, A.E., Baidakova, M.V., Dedeikin, A.T., Osipov, V.Yu., Siklitski, V.I., Osawa, E., Ozawa, M., Vul', A.Ya., J. Phys. Chem. Solids, 63 (2002) 1993.CrossRefGoogle Scholar
Palosz, B., Pantea, C., Grzanka, E., Stelmakh, S., Proffen, Th., Zerda, T.W., and Palosz, W., Diamond and Related Materials, 15 (2006) 1813.CrossRefGoogle Scholar
Palosz, B., Grzanka, E., Gierlotka, S., Wojdyr, M., Palosz, W., Proffen, Th., Rich, R., and Stelmakh, S., Proc.. of the IUTAM Symposium on Modelling Nanomaterials and Nanosystems, (Springer Science+Business Media.V., Eds. Pyrz, R. and Rauhe, J.C.) (2008) pp. 7588.Google Scholar
Palosz, B., Grzanka, E., Gierlotka, S., Stelmakh, S., Z. Kristallographie, 225 (2010) 588.CrossRefGoogle Scholar
Stelmakh, S., Grzanka, E., Gierlotka, S. & Palosz, B., Denver X-ray Conference Proceedings, Advances in X-ray Analysis, Volume 55 (2011).Google Scholar
Petrov, I., Shenderova, O., Grishko, V., Grichko, V., Tyler, T., Cunningham, G., and McGuire, G., Diamond and Related Materials, 16 (2007) 2098.CrossRefGoogle Scholar
Peterson, P.F., Gutmann, M., Proffen, Th., and Billinge, S.J.L. J. Appl. Crystallogr., 33 (2000) 1192.CrossRefGoogle Scholar
Farrow, C.L., Juhas, P., Liu, J.W.., Bryndin, D., Boin, E.S., Bloch, J., Proffen, Th., and Billinge, S.J.L., J. Phys.: Condens. Matter, 19 (2007) 335219.Google Scholar
Skrobas, K., Gierlotka, S., Stelmakh, S., and Palosz, B., NanoPDF Software Package; http://www.unipress.waw.pl/soft/crystallography/nanopdf Google Scholar