Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T09:52:29.413Z Has data issue: false hasContentIssue false

Intrinsic Localized Lattice Modes and Thermal Transport: Potential Application in a Thermal Rectifier

Published online by Cambridge University Press:  31 January 2011

Michael E Manley*
Affiliation:
manley3@llnl.gov, Lawrence Livermore National Laboratory, Condensed Matter and Materials, Mail Code: L356, 7000 East Ave, Livermore, California, 94559, United States
Get access

Abstract

Recent experiments provide evidence of intrinsic localized modes (ILMs) in the lattice dynamics of conventional 3D materials. Here evidence that ILMs in uranium metal enhance the thermal conductivity is presented along with speculation on how thermal transport by ILMs might be used to improve a reported design for a solid-state thermal rectifier.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kittel, C. Introduction to Solid State Physics, 7th Edition, (John Wiley & Sons, Inc., New York, New York, 1996) pp. 130, 133, 166.Google Scholar
2 Sievers, A. J. Takeno, S. Phys. Rev. Lett. 61, 970 (1988).Google Scholar
3 Flach, S. and Gorbach, A. Phys. Rep. 467, 1 (2008); G. James, B. Sanchez, J. Cuevas, Rev. Math. Phys. 21, 1 (2009).Google Scholar
4 Manley, M. E. Yethiraj, M. Sinn, H. Volz, H. Alatas, A. Lashley, J. C. Hults, W. L. Lander, G. H., Smith, J. L. Phys. Rev. Lett. 96, 125501 (2006).Google Scholar
5 Manley, M. E. Sievers, A. J. Lynn, J. W. Kiselev, S. A. Agladze, N. I. Chen, Y. Llobet, A. Alatas, A., Phys. Rev. B 79, (2009).Google Scholar
6 Manley, M. E. Alatas, A. Trouw, F. Leu, B. M. Lynn, J. W. Chen, Y. Hults, W. L. Phys. Rev. B 77, 214305 (2008).Google Scholar
7 Manley, M. E. Thoma, D. J. Yethiraj, M. Sinn, H. Volz, H. M. Alatas, A. Lashley, J. C. Hults, W. L., Lander, G. H. and Smith, J. L. J. of Alloys and Compounds 444-445, 129132 (2007).Google Scholar
8 Manley, M. E. Lynn, J. Chen, Y. Lander, G. H. Phys. Rev. B 77, 052301 (2008).Google Scholar
9 Terraneo, M. Peyrard, M. and Casati, G. Phys. Rev. Lett. 88, 094302 (2002).Google Scholar
10 Li, B. Wang, L. and Casati, G. Appl. Phys. Lett. 88, 143501 (2006).Google Scholar
11 Wang, L. and Li, B. Phys. Rev. Lett. 99, 177208 (2007).Google Scholar
12 Wang, L. and Li, B. Phys. Rev. Lett. 101, 267203 (2008).Google Scholar
13 Holden, A. N. Physical Metallurgy of Uranium (Addison-Wesley Publishing Reading,Massachusetts, U.S.A., 1958) p. 4555.Google Scholar
14 Chetverikov, A. P. Ebeling, W. Ropke, G. and Velarde, M. G. Contrib. Plasma Phys. 47, No. 6, 465478 (2007).Google Scholar
15 Marín, J. L., Eilbeck, J. C. and Russell, F. M. Phys. Lett. A 248 225 (1998).Google Scholar