Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T01:17:15.203Z Has data issue: false hasContentIssue false

Intrinsic Optical and Electrical Properties of Strain-Adjusted Short-Period SimGen Superlattices

Published online by Cambridge University Press:  25 February 2011

Janos Olajos
Affiliation:
Dept of Solid State Physics, Lund University, Box 118, S-221 00 LUND, SWEDEN
Jesper Engvall
Affiliation:
Dept of Solid State Physics, Lund University, Box 118, S-221 00 LUND, SWEDEN
Hermann G. Grimmeiss
Affiliation:
Dept of Solid State Physics, Lund University, Box 118, S-221 00 LUND, SWEDEN
Erich Kasper
Affiliation:
Daimler-Benz AG, Research Center, Wilhelm Runge Strasse 11 D-7800 ULM, GERMANY
Horst Kibbel
Affiliation:
Daimler-Benz AG, Research Center, Wilhelm Runge Strasse 11 D-7800 ULM, GERMANY
Hartmut Presting
Affiliation:
Daimler-Benz AG, Research Center, Wilhelm Runge Strasse 11 D-7800 ULM, GERMANY
Get access

Abstract

Interband optical transitions are observed in a series of strain-adjusted, short-period Si/Ge superlattices by means of photocurrent spectroscopy, infrared absorption, photo (PL)- and electroluminescence (EL). The onsets of the interband absorption in the energy range of 0.7 - 0.9 eV are in good agreement with the observed PL and EL. Bandgap-related EL is observed in mesa diodes at room temperature, whereas the PL disappears at about 40K. In samples, annealed at growth temperatures (550°C) and higher, a systematic shift of the bandgap is observed which is discussed in terms of a process involving interdiffusion of the Si and Ge atoms. Photocurrent measurements at low temperatures support the model from PL studies suggesting that the photogenerated electrons are immobile in the SLS at low temperatures and have to be thermally ionized from shallow levels.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Referencs

1) Zachai, R., Eberl, K., Abstreiter, G., Kasper, E., and Kibbel, H., Phys.Rev. Lett. 64, 1055 (1990)Google Scholar
2) Olajos, J., Engvall, J., Grimmeiss, H. G., Menczigar, U., Abstreiter, G., Kibbel, H., Kasper, E., and Presting, H., Phys. Rev. B 46, 12 857 (1992)Google Scholar
3) Menczigar, U., Abstreiter, G., Olajos, J., Grimmeiss, H. G., Kibbel, H., Presting, H., and Kasper, E., Phys. Rev. B 47, 4099 (1993)Google Scholar
4) Goues, F.K. Le, Meyerson, B. S., and Morar, F. J., Phys. Rev. Lett 66, 2903 (1991)Google Scholar
5) Oueslati, M., Zoughai, M., Pistol, M-E, Samuelsson, L., Grimmeiss, H.G., and kanski, M. Bal, Phys. Rev. B32, 8220 (1985)Google Scholar
6) Schorer, R., Friess, E., Eberl, K., and Abstreiter, G., Phys. Rev. B 44, 1772 (1991)Google Scholar
7) Klasens, H.A., J. Phys. Chem. Solids 7, 175 (1958)Google Scholar
8) van Roosbroeck, W. and Shockley, W., Phys. Rev 94,1558 (1954)Google Scholar