Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T06:14:46.321Z Has data issue: false hasContentIssue false

Investigation of Domain Wall Velocity and Nucleation Rate in Polarization Switching of Epitaxial Pb(Zr,Ti)O3 Thin Films Using Piezoresponse Scanning Force Microscopy

Published online by Cambridge University Press:  11 February 2011

H. Fujisawa
Affiliation:
Department of Electrical Engineering and Computer Sciences, Graduate School of Engineering, Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671–2201, Japan.
T. Yagi
Affiliation:
Department of Electrical Engineering and Computer Sciences, Graduate School of Engineering, Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671–2201, Japan.
M. Shimizu
Affiliation:
Department of Electrical Engineering and Computer Sciences, Graduate School of Engineering, Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671–2201, Japan.
H. Niu
Affiliation:
Department of Electrical Engineering and Computer Sciences, Graduate School of Engineering, Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671–2201, Japan.
Get access

Abstract

Domain wall velocity and nucleation rate in 250nm-thick epitaxial Pb(Zr,Ti)O3 thin films were studied by piezoresponse scanning force microscopy (PFM). Domain growth observed after applying switching pulses shorter than the switching time can be described using the Ishibashi theory. At a pulse voltage of +5V, experimental results indicated that new nucleation occurred during the switching period, which corresponded to the Category I in the Ishibashi theory. Switching time, domain wall velocity and nucleation rate at +5V can be obtained as 70ns, 8.3m/s and 43μs-1 μm-2, respectively. As compared with experimental results reported in BaTiO3 single crystals, domain wall velocity was much smaller but nucleation rate was much larger than those in single crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Merz, W. J., Phys. Rev. 95, 690 (1954).Google Scholar
2 Gopalan, V. and Mitchell, T. E., J. Appl. Phys. 85, 2304 (1999).Google Scholar
3 Avrami, M., J. Chem. Phys. 7, 1103 (1939): 8, 212 (1940): 9, 177 (1941).Google Scholar
4 Ishibashi, Y. and Takagi, Y., J. Phys. Soc. Japan 31, 506 (1971).Google Scholar
5 Scott, J. F., Kammerdiner, L., Parris, M., Traynor, S., Ottenbacher, V., Shawabkeh, A. and Oliver, W. F., J. Appl. Phys. 64, 787 (1988).Google Scholar
6 Duiker, H. M., Beale, P. D., Scott, J. F., Paz de Araujo, C. A., Melnick, B. M., Cuchiaro, J. D. and McMillan, L. D., J. Appl. Phys. 68, 5783 (1990).Google Scholar
7 Larsen, P. K., Kampschoer, G. L. M., Ulenaers, M. J. E., Spierings, G. A. C. M., and Cuppens, R., Appl. Phys. Lett. 59, 611 (1991).Google Scholar
8 Takata, K., Kushida, K., Torii, K. and Miki, H., Jpn. J. Appl. Phys. 33, 3193 (1994).Google Scholar
9 Hidaka, T., Maruyama, T., Saitoh, M., Mikoshiba, N., Shimizu, M., Shiosaki, T., Wills, L. A., Hiskes, R., Dicarolis, S. A. and Amano, J., Appl. Phys. Lett. 68, 2358 (1996).Google Scholar
10 Gruverman, A., Auciello, O. and Tokumoto, H., Appl. Phys. Lett. 69, 3191 (1996).Google Scholar
11 Colla, E. L., Hong, S., Taylor, D. V., Tagantsev, A. K., Setter, N. and No, K., Appl. Phys. Lett. 72, 2763 (1998).Google Scholar
12 Hong, S., Colla, E. L., Kim, E., Taylor, D. V., Tagantsev, A. K., Mulralt, P., No, K. and Setter, N., J. Appl. Phys. 86, 607 (1999).Google Scholar
13 Fujisawa, H., Yagi, T., Shimizu, M. and Niu, H., Ferroelectrics 269, 21 (2002).Google Scholar
14 Fujisawa, H., Yagi, T., Shimizu, M. and Niu, H., Proc. of 13th IEEE Int. Symp. on Applications of Ferroelectrics 2002. (in press)Google Scholar
15 Fujisawa, H., Nakashima, S., Kaibara, K., Shimizu, M. and Niu, H., Jpn. J. Appl. Phys. 38, 5392 (1999).Google Scholar
16 Nonomura, H., Fujisawa, H., Shimizu, M. and Niu, H., Jpn. J. Appl. Phys., 41 (2002). (in press)Google Scholar
17 Stadler, H. L. and Zachmanidis, P. J., J. Appl. Phys. 34, 3255(1963).Google Scholar