Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T05:26:45.704Z Has data issue: false hasContentIssue false

The Investigation of Preferred Orientation Growth of ZnO Films on the Ceramic Substrates

Published online by Cambridge University Press:  01 February 2011

Sheng-Yuan Chu*
Affiliation:
Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan.
Te-Yi Chen
Affiliation:
Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan.
Walter Water
Affiliation:
Department of Electrical Engineering, Tung Nan Institute of Technology, Taipei, Taiwan.
Tung-Yi Huang
Affiliation:
Shu-Zen college of medicine and management, Kaoshiung, Taiwan.
*
*Corresponding author.Fax: 886-06-2345482 E-mail: chusy@mail.ncku.edu.tw
Get access

Abstract

Poly-crystal ZnO films with c-axis (002) orientation have been successfully grown on the lead-based ceramic substrates by r.f. magnetron sputtering technique. The deposited films were characterized as a function of deposition time and argon-oxygen gas flow ratio. Crystalline structures of the films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Highly oriented films with c-axis normal to the substrates can be obtained by depositing under a total pressure of 10mTorr containing 50% argon and 50% oxygen and r.f. power of 70W for 3 hours. The phase velocity, electromechanical coupling coefficient and temperature coefficient of frequency of SAW device with ZnO/IDT/PT-ceramic structure were investigated. It shows that the preferred oriented ZnO film is beneficial for improving the electromechanical coupling coefficient of SAW device.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Frans, C. M., Pol, V. D., Ceram. Bull. 69(12) (1990) 1959.Google Scholar
2. Rajalakshmi, M., Arora, A. K., J. Appl. Phys. 87(5) (2000) 2445.Google Scholar
3. Onodera, A., Tamaki, N., Jin, K., Yamashita, H., Jpn. J. Appl. Phys. 36 (1997) 6008.Google Scholar
4. Yamazaki, O., Mitsuyu, T., Wasa, K., IEEE Trans. Sonics and Ultrason. 27(6) (1980) 369.Google Scholar
5. Hickernell, F. S., IEEE Trans. Sonics and Ultrason. 32(5) (1985) 621.Google Scholar
6. Kamalasanan, M. N., Chandra, S., Thin Solid Films 288 (1996) 112.Google Scholar
7. Paraguay, F. D., Estrada, W. L., Acosta, D. R. N., Andrade, E., Miki-Yoshida, M., Thin Solid Films 350 (1999) 192.Google Scholar
8. Nakamura, K., Shoji, T., Kang, H. B., Jpn. J. Appl. Phys. 39(6) (2000) L534.Google Scholar
9. Minami, T., Sonohara, H., Takata, S., Sato, H., Jpn. J. Appl. Phys. 33(5B) (1994) L743.Google Scholar
10. Maniv, S., Zangvil, A., J. Appl. Phys. 49(5) (1978) 2787.Google Scholar
11. Wu, M. S., Shih, W. C., Tsai, W. H., J. Phys D: Appl. Phys. 31 (1998) 943.Google Scholar
12. Hashimoto, K. Y., Ogawa, S., Nonoguchi, A., Omori, T., Yamaguchi, M., IEEE Ultrasonics Symposium (1998) 207.Google Scholar
13. Sundaram, K. B., Khan, A., Thin Solid Films 295 (1997) 87.Google Scholar
14. Croitoru, N., Seidman, A., Yassin, K., Thin Solid Films 150 (1987) 291.Google Scholar
15. Water, W., Chu, S. Y., Mater. Lett. 55 (2002) 67.Google Scholar
16. Chu, S.Y., Water, W., Liaw, J.T., Inter. Ferro. 44 (2002) 91.Google Scholar
17. Tseng, C. C., J. Appl. Phys. 38(11) (1967) 4281 Google Scholar
18. Kodama, M., Egami, H., Yoshida, S., Jpn. J. Appl. Phys. 14(11) (1975) 1847.Google Scholar
19. Ito, Y., Takeuchi, H., Jyomura, S., Nagatsuma, K., Ashida, Appl. Phys. Lett. 35(8) (1979) 595.Google Scholar
20. Takeuchi, H., Yamashita, K., J. Appl. Phys. 53(4) (1982) 6147.Google Scholar
21. Feuillard, G., Lethiecq, M., Amazit, Y., Certon, D., Millar, C., Patat, F., J. Appl. Phys. 71(11) (1993) 6523.Google Scholar
22. Feuillard, G., Lethiecq, M., Janin, Y., Tessier, L., Pourcelot, L., IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 44 (1997) 194.Google Scholar
23. Damjanovic, D., Wolny, W., Engan, H., Lethiecq, M., Pardo, L., IEEE Intern. Freq. Contr. Symp. (1998) 770.Google Scholar
24. Chen, T. Y., Chu, S. Y., Juang, Y. D., Ultrasonics 41 (2003) 141.Google Scholar
25. Nakamura, K., Hanaoka, T., Jpn. J. Appl. Phys. 32 (1993) 2333.Google Scholar
26. Proc. IRE. 49 (1961) 1161.Google Scholar
27. Smith, W. R., Gerard, H.M., Collins, J.H., Reeder, T.M., Shaw, H. J., IEEE Trans. Microwave Theory and Techniques, vol. MTT-17, 11 (1969) 856.Google Scholar