No CrossRef data available.
Article contents
Ion-Irradiation Study of the “Exotic” Mineral Neptunite: LiNa2K(Fe,Mg,Mn)2Ti2Si8O24
Published online by Cambridge University Press: 26 February 2011
Abstract
Single crystals of the silicate neptunite were irradiated with 600 keV Ar2+ and 1.5 MeV Kr+ and analysed by transmission electron microscopy. Amorphization was observed in a surface layer several hundred angstroms thick following Ar2+ irradiations up to 5.0×l013 Ar/cm2, yet the Ar2+ ions travelled an average of 1/2 μm in depth. The microstructure of the amorphous surface layer depends on the ion fluence, but the amorphous layer thickness remained constant. At the highest fluence, a narrow region below the amorphous layer shows a brittle-to-ductile strain transition, due to tensional volume-expansion of the adjacent ductile amorphous layer. With 1.5 MeV Kr1+, amorphization of the electron transparent region was completed after a fluence of 1.7×l014 Kr+/cm2, and no further damage was observed up to 5.1×1015 Kr+/cm2. However, following a low fluence of 2.0×1011 Kr+/cm2, a single crystal of neptunite became a polycrystalline aggregate (grain size 10 nm) within 7 days of room temperature aging.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1991