Published online by Cambridge University Press: 21 February 2011
The Au-induced crystallization of a-Si:H has been studied by evaporating Au films of different thicknesses onto intrinsic glow discharge deposited a-Si:H layers. The presence of a sharp peak in the Raman spectra (FWHM≈9 cm-1, ω516 cm-1) of samples with a Au thickness larger than 2 nm, which have been annealed in vacuum at 400K≤T≤600K, indicate that the crystallites have approximately the same size (6nm) regardless of the annealing conditions. An investigation of crystallization versus Au-film thickness revealed, that the total crystallized volume is increasing with Au thickness, and furthermore a saturation of the crystallized volume takes place, most probably due to an exhaustion of the Au reservoir. The increase of crystallization rate with temperature follows an Arrhenius-like dependence with an activation energy of 1.1 eV. Changes in hydrogen content as a consequence of the crystallization have been monitored by H-effusion measurements: Au-coated a-Si:H samples show a strong H2 evolution at temperatures substantially lower than uncoated ones.