Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T06:14:12.109Z Has data issue: false hasContentIssue false

Kinetics of the Nucleation and Growth of Helium Bubbles in bcc Iron

Published online by Cambridge University Press:  01 February 2011

Chaitanya Suresh Deo
Affiliation:
cdeo@lanl.gov, Los Alamos National Laboratory, MST-8, PO Box 1663, MS G755, Los Alamos NAtional Laboratory, Los Alamos, NM, 87545, United States, 505-667-1755
Srinivasan G. Srivilliputhur
Affiliation:
sgsrini@lanl.gov, Los Alamos National Laboratory, Los Alamos, 87545, United States
Michael Baskes
Affiliation:
baskes@lanl.gov, Los Alamos National Laboratory, Los Alamos, 87545, United States
Stuart Maloy
Affiliation:
maloy@lanl.gov, Los Alamos National Laboratory, Los Alamos, 87545, United States
Michael James
Affiliation:
mrjames@lanl.gov, Los Alamos National Laboratory, Los Alamos, 87545, United States
Maria Okuniewski
Affiliation:
okuniews@uiuc.edu, University of Illinois, Urbana, 61801, United States
James Stubbins
Affiliation:
jstubbin@uiuc.edu, University of Illinois, Urbana, 61801, United States
Get access

Abstract

Microstructural defects are introduced in materials upon irradiation with energetic particles. These defects can cause degradation of mechanical properties and contribute to material failure. Transmuted helium in irradiated stainless steels exerts deleterious effects on material properties. We have performed kinetic Monte Carlo (kMC) simulations of point defect diffusion and clustering in bcc alpha iron. The model includes helium and vacancy diffusion and spontaneous clustering and dissociation of the point defects from the clusters. We employ the kMC simulations to investigate the time evolution of the point defect configuration leading to defect clustering and bubble formation. The concentration of embryonic point defect clusters is determined as a function of the simulation time.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Garner, F., Oliver, B., et al., Journal of Nuclear Materials, 4th International Workshop on Spallation Matereials Technology (IWSMT-4) 296, 6682 (2001).Google Scholar
[2] Oliver, B. M., James, M. R., et al., Journal of Nuclear Materials, 10th International Conference on Fusion Reactor Materials (ICFRM-10) 307, 14711477 (2002).Google Scholar
[3] Maloy, S., James, M., et al., JOURNAL OF NUCLEAR MATERIALS, 5th International Workshop on Spallation Materials Technology 318, 283291 (2003).Google Scholar
[4] Maloy, S. A., James, M. R., et al., in 3rd Workshop on Utilisation and Reliability of High Power Proton Accelerators edited by OECD, 105-124, (2003)Google Scholar
[5] Armstrong, T. R. and Goodhew, P. J., Radiation Effects 77, 3548 (1983).Google Scholar
[6] Trinkaus, H. and Singh, B. N., Journal of Nuclear Materials, 323, 229–42 (2003).Google Scholar
[7] BASKES, M., FASTENAU, R., et al., Journal of Nuclear Materials 102, 235245 (1981).Google Scholar
[8] BORTZ, A. B., KALOS, M. H., et al., Journal of Computational Physics 17, 1018 (1975).Google Scholar
[9] Heinisch, H. L. and Singh, B. N., Philosophical Magazine, 83, 3661–76 (2003).Google Scholar
[10] Heinisch, H. L., Singh, B. N., et al., Journal of Nuclear Materials, 276, 5964 (2000).Google Scholar
[11] Domain, C., Becquart, C. S., et al., Journal of Nuclear Materials 335, 121145 (2004).Google Scholar
[12] Morishita, K., Sugano, R., et al., Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions With Materials and Atoms, 202, 7681 (2003).Google Scholar
[13] Battaile, C. C. and Srolovitz, D. J., Annual Review of Materials Research 32, 297319 (2002).Google Scholar
[14] FICHTHORN, K. A. and WEINBERG, W. H., Journal of Chemical Physics 95, 1090–6 (1991).Google Scholar