Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T10:59:06.265Z Has data issue: false hasContentIssue false

Laser-Processing for Patterned and Free-Standing Nitride Films

Published online by Cambridge University Press:  10 February 2011

M. K. Kelly
Affiliation:
Walter Schottky Institut, Technische Universität München, 85748 Garching, Germany
O. Ambacher
Affiliation:
Walter Schottky Institut, Technische Universität München, 85748 Garching, Germany
R. Dimitrov
Affiliation:
Walter Schottky Institut, Technische Universität München, 85748 Garching, Germany
H. Angerer
Affiliation:
Walter Schottky Institut, Technische Universität München, 85748 Garching, Germany
R. Handschuh
Affiliation:
Walter Schottky Institut, Technische Universität München, 85748 Garching, Germany
M. Stutzmann
Affiliation:
Walter Schottky Institut, Technische Universität München, 85748 Garching, Germany
Get access

Abstract

Films of GaN and related materials can be processed by methods that invoke thermal decomposition, induced by intense illumination with a pulsed laser. At elevated temperatures, the nitride semiconductors undergo decomposition, with the effusion of nitrogen gas. We exploit this mechanism as an alternative to etching for the patterning of nitride films and for the opening of buried interfaces. Films of GaN have been etched to a depth of 1 μm in less than three seconds. This interface decomposition allows in particular the separation of nitride films from transparent growth substrates such as sapphire.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kelly, M. K., Ambacher, O., Dahlheimer, B., Groos, G., Dimitrov, R., Angerer, H., and Stutzrnann, M., Appl. Phys. Lett. 69, 1749 (1996).10.1063/1.117473Google Scholar
2. Kelly, M. K., Ambacher, O., Dimitrov, R., Handschuh, R., and Stutzmann, M., phys. stat. sol. 159, R3 (1997).Google Scholar
3. Ambacher, O., Dimitrov, R., Lentz, D., Metzger, T., Rieger, W., and Stutzmann, M., J. Crystal Growth 167, 1 (1996).Google Scholar
4. Angerer, H., Brunner, D., Freudenberg, F., Ambacher, O., Stutzmann, M., Hopler, R., Metzger, T., Born, E., Dollinger, G., Bergmaier, A., Karsch, S., Komer, H.-J., Appl. Phys. Lett. 71, 1504 (1997).Google Scholar
5. Vaudo, R. P., Phanse, V. M., Wu, X., Golan, Y., and Speck, J. S., Proceedings of the Second International Conference on Nitride Semiconductors, 442 (1997).Google Scholar
6. Yu, G., Wang, G., Ishikawa, H., Umeno, M., Soga, T., Egawa, T., Watanabe, J., and Jimbo, T., Appl. Phys. Lett. 70, 3209 (1997).Google Scholar
7. Kawashima, Takahiro, Yoshikawa, Hisashi, Adachi, Sadao, Fuke, Shunro, and Ohtsuka, Kohji,J. Appl. Phys. 82, 3528 (1997).Google Scholar
8. Ambacher, O., Brandt, M. S., Dimnitrov, R., Metzger, T., Stutzmann, M., Fischer, R. A., Miehr, A., Bergmaier, A., and Dollinger, G., J. Vac. Sci. Technol. B14, 3532 (1996).Google Scholar
9. For example, Vartuli, C. B., Pearton, S. J., Abernathy, C. R., Shul, R. J., Howard, A. J., Kilcoyne, S. P., Parmeter, J. E., and Hagerott-Crawford, M., J. Vac. Sci. Technol. A14, 1011 (1996); R. J. Shul, G. B.McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, Jr., C. Tran, and M. Schurman, Appl. Phys. Lett. 69, 1119 (1996).Google Scholar
10. Rieger, W., Metzger, T., Angerer, H., Dimitrov, R., Ambacher, O., and Stutzmann, M., Appl. Phys. Lett. 68, 970 (1996).Google Scholar
11. Leonard, R. T. and Bedair, S. M., Appl. Phys. Lett. 68, 794 (1996).Google Scholar