Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T00:19:47.672Z Has data issue: false hasContentIssue false

A LCAO-OO Approach to the Calculation of Electronic Properties of Materials

Published online by Cambridge University Press:  10 February 2011

P. Pou
Affiliation:
Física Teórica de la Materia Condensada, C-V, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
R. Perez
Affiliation:
Física Teórica de la Materia Condensada, C-V, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
J. Ortega
Affiliation:
Física Teórica de la Materia Condensada, C-V, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
F. Flores
Affiliation:
Física Teórica de la Materia Condensada, C-V, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Get access

Abstract

We present a selfconsistent LCAO approach for describing the electronic properties of materials. This method introduces many-body effects by means of a new approach, whereby a local orbital potential is defined by calculating the exchange-correlation energy as a function of the different orbital occupancies. A LCAO-pseudopotential is also introduced, keeping all the calculations within the context of the local orbital basis. We have applied the method to the calculation of simple molecules and crystals, in both cases we find results that confirm the validity of our approach.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985);Google Scholar
Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. and Joannopoulos, J. D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
2. Harris, J., Phys. Rev. B 31, 1770 (1985).Google Scholar
3. Sankey, O. F. and Niklewski, D. J., Phys. Rev, B 40, 3979 (1989);Google Scholar
Lin, Z. and Harris, J., J. Phys. Condens. Matter 5, 1055 (1993);Google Scholar
Porezag, D., Frauenheim, Th., Köhler, Th., Seifert, G. and Kaschuer, R., Phys. Rev. B 51, 12947 (1995);Google Scholar
Ordejón, P., Artacho, E. and Soler, J. M., Phys. Rev. B 53, 10441 (1996).Google Scholar
4. Demkov, A. A., Ortega, J., Sankey, O. F. and Grumbach, M. P., Phys. Rev. B 52, 1618 (1995).Google Scholar
5. See for example, Mauri, F. et al, Phys. Rev. B 47, 9973 (1993);Google Scholar
Ordejón, P., Drabold, D. A., Grumbach, M. P. and Martin, R. M., Phys. Rev. B 48, 14646 (1993).Google Scholar
6. Horsefield, A. P., Phys. Rev. B 56, 6594 (1996);Google Scholar
Goedecker, S. and Colombo, L., Phys. Rev. Lett. 73, 122 (1994).Google Scholar
7. Goldberg, E. C., Martin-Rodero, A., Monreal, R. and Flores, F., Phys. Rev. B 39, 5684 (1988).Google Scholar
8. Garcia-Vidal, F. J., Martin-Rodero, A., Flores, F., Ortega, J. and Pérez, R., Phys. Rev. B 44, 11412(1991).Google Scholar
9. Garcia-Vidal, F. J., Merino, J., Pérez, R., Rincón, R., Ortega, J. and Flores, F., Phys. Rev. B 50, 10537 (1994).Google Scholar
10. Eschrig, H. and Bergeri, I., Phys. Stat. Sol. B 90, 621 (1978).Google Scholar
11. Bolcatto, P. G., Goldberg, E. C and Passoppi, C. G., Phys. Rev. A 50, 4643 (1994).Google Scholar
12. Clementi, and Roetti, , Atomic and Nuclear Data Tables, 14, 177, (1974).Google Scholar
13. Jansen, R. W. and Sankey, O. F., Phys. Rev. B 36, 6520 (1987).Google Scholar
14. Dovesi, R., Causa, M. and Angonoa, G., Phys. Rev. B 24, 4177 (1981);Google Scholar
Causa, M., Dovesi, R. and Roetti, C., Phys. Rev. B 43, 11937 (1991).Google Scholar
15. Kajueter, H. and Kotliar, G., Phys. Rev. Lett. 77, 131 (1996);Google Scholar
Martin-Rodero, A., Flores, F., Baldo, M., and Pucci, R., Solid State Commun. 44, 911 (1982);Google Scholar
Lichtenstein, A. I. and Katsnelson, M. L, Cond-mat/9707127 (submitted to Phys. Rev. B).Google Scholar