Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-02T21:59:18.387Z Has data issue: false hasContentIssue false

Liquid Crystal Optical Phase Modulators for Beam Steering

Published online by Cambridge University Press:  15 March 2011

Jay Stockley
Affiliation:
Boulder Nonlinear Systems Incorporated, 450 Courtney Way, Unit 107 Lafayette, CO 80026, U.S.A.
Xiaowei Xia
Affiliation:
Boulder Nonlinear Systems Incorporated, 450 Courtney Way, Unit 107 Lafayette, CO 80026, U.S.A.
Teresa Ewing
Affiliation:
Boulder Nonlinear Systems Incorporated, 450 Courtney Way, Unit 107 Lafayette, CO 80026, U.S.A.
Steve Serati
Affiliation:
Boulder Nonlinear Systems Incorporated, 450 Courtney Way, Unit 107 Lafayette, CO 80026, U.S.A.
Get access

Abstract

Beamsteering using liquid crystals can be achieved with refractive or diffractive implementations. The common thread in these various structures is that the liquid crystal is employed as an optical phase modulator. Either nematic or smectic liquid crystal phases can be used to shift the phase of light and steer an optical beam. Various liquid crystal optical phase modulating schemes will be described. Examples include polarization independent and quasi-achromatic modulators. Model predictions and experimental results demonstrating the optical phase modulation and beamsteering made possible using different liquid crystal based designs will be presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mcmanamon, P.F., Dorschner, T. A., Corkum, D. L., Friedman, L. J., Hobbs, D. S., Holz, M., Liberman, S., Nguyen, H. Q., Resler, D. P., Sharp, R. C., and Watson, E. A., Proc. IEEE, 84, 268, (1996).Google Scholar
2. Morita, Y., Stockley, J. E., Johnson, K. M., Hanelt, E., and Sandmeyer, F., Jpn. J. Appl. Phys. 38, 95, (1999).Google Scholar
3. Skolnik, M. I., Introduction to Radar Systems, (McGraw-Hill Book Company, 1980) p. 278.Google Scholar
4. Jones, R. Clark, J. Opt. Soc. Am., 31, 500, (1941).Google Scholar
5. Stockley, J. E., Serati, S. A., Sharp, G. D., Wang, P., Walsh, K. F., and Johnson, K. M., Proc. of SPIE, 3131, 111, (1997).Google Scholar
6. Stockley, J. E., Sharp, G. D., Serati, S. A. and Johnson, K. M, Opt. Lett. 20, 2441, (1995).Google Scholar
7. Stockley, J. E., Sharp, G. D., Serati, S. A., Wang, P., and Johnson, K. M., Diffractive Optics and Micro-optics 5, 211, OSA Technical Digest Series, (1996).Google Scholar
8. Clark, N. A., and Lagerwall, S. T., Appl. Phys. Lett. 36, 899, (1980).Google Scholar
9. Dahl, I. and Lagerwall, S. T., Ferroelectrics 58, 215 (1984).Google Scholar
10. Yang, K. H., J. Appl. Phys. 61, 2400, (1987).Google Scholar
11. Stockley, J. E., Ph. D. Thesis, University of Colorado, 1996.Google Scholar