Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T23:45:21.740Z Has data issue: false hasContentIssue false

Low Temperature Preparation of KNbO3Films by Hydrothermal Method and Their Characterization

Published online by Cambridge University Press:  13 February 2014

N. Kaneko
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, J2-43, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
T. Shiraishi
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, J2-43, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
M. Kurosawa
Affiliation:
Department of Information Processing, Tokyo Institute of Technology, G2-32, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
T. Shimizu
Affiliation:
Materials Research Center for Element Strategy, Tokyo Institute of Technology, S2-16, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
H. Funakubo
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, J2-43, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
Get access

Abstract

KNbO3 films were prepared at 100 - 240°C on (100)cSrRuO3//(100)SrTiO3 substrates by hydrothermal method using KOH and Nb2O5 as source materials. The incubation time before starting deposition and the deposition rate after starting deposition increased and decreased with decreasing deposition temperature, respectively. Epitaxial {100}c-oriented KNbO3 films with 300 nm thick were successfully obtained at 100°C on (100)cSrRuO3//(100)SrTiO3 substrates for 144 h. We observed the typical butterfly-shape strain curves originated from the piezoelectricity for the first time for KNbO3 films deposited down to 120°C.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Park, Kwi-ll, Xu, Sheng, Liu, Ying, Hwang, Geon-Tae, Kang, Suk-Joong L., Wang, Zhong Lin and Lee, Keon Jae, Nano Lett.,10, 49394943 (2010).CrossRefGoogle Scholar
Kim, Seungjun, Jeong, Hu Young, Kim, Sung Kyu, Choi, Sung-Yool and Lee, Keon Jae, Nano Lett.,11, 54385442 (2011).CrossRefGoogle Scholar
Lee, Choong Hee, Kim, Sang Jin, Oh, Yongsoo, Kim, Mi Yang, Yoon, Yeo-Joo and Hwan-Soo Lee, J. Appl. Phys., 108, 102814 1-5 (2010)CrossRefGoogle Scholar
Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N. Y., Stephenson, G. B., Stolitchnov, I., Taganstev, A. K., Taylor, D. V., Yamada, T., and Streiffer, S., J. Appl. Phys. 100, 051606 (2006).CrossRefGoogle Scholar
Kanno, I., Fujii, S., Kamada, T. and Takayama, R., Appl. Phys. Lett., 70, 13781380 (1997).CrossRefGoogle Scholar
Furukawa, T., Ishida, K. and Fukada, E., J. Appl. Phys., 50, 49044912 (1979).CrossRefGoogle Scholar
Liu, W. and Ren, X., Phys. Rev. Lett., 103, 257602 1-4 (2009).CrossRefGoogle Scholar
Kawai, H., Jpn. J. Appl. Phys., 8, 975976 (1969).CrossRefGoogle Scholar
Ohigashi, H., J. Appl. Phys., 47, 949955 (1976).CrossRefGoogle Scholar
Mohammadi, B., Yousefi, A. and Bellah, S., Polym. Testing, 26, 4250 (2007).CrossRefGoogle Scholar
Ueberschlag, P., Sensor Rev., 21, 118125 (2001)CrossRefGoogle Scholar
Onoe, A., Yoshida, A. and Chikuma, K., Appl. Phys. Lett., 69, 167169 (1996) .CrossRefGoogle Scholar
nad, V. Gopalan Raj, R., J. Am. Ceram. Soc., 79, 32893296 (1996).Google Scholar
Nystrom, M. J., Wessels, B. W., Chen, J. and Marks, T. J., Appl. Phys. Lett., 68, 761763 (1996).CrossRefGoogle Scholar
Graettinger, T., Rou, S., Ameen, M., Auciello, O., Kingon, A., Appl. Phys. Lett., 58(18) 19641966 (1991).CrossRefGoogle Scholar
Rousseau a, A., Laur, V., Guilloux-Viry, M., Tanné, G., Huret, F., Députier, S., Perrin, A. and Lalu, F., Laurent, P., Thin Solid Films 515, 23532360 (2006).CrossRefGoogle Scholar
Kang, C., Park, J., Shen, D., Ahn, H., Park, M. and Kim, D. J. Sol-Gel. Sci. Technol., 58, 8590 (2011).CrossRefGoogle Scholar
Kanda, T., Morita, T., Kurosawa, M. and Higuchi, T., Sens. Actuators A, 83, 6775 (2000).CrossRefGoogle Scholar
Yasui, H., Kurosawa, M. K. and Higuchi, T., Sens. Actuators A, 96, 2833 (2002).CrossRefGoogle Scholar
Morita, T., Wagatsuma, Y., Morioka, H., Funakubo, H., Setter, N., Cho, Y.., J. Mater. Res., 19, 18621868 (2004).CrossRefGoogle Scholar
Morita, T. and Cho, Y., Appl. Phys. Lett., 88, 112908 1-3 (2006).CrossRefGoogle Scholar
Shimomura, K., Tsurumi, T., Ohba, Y., and Daimon, M.: Jpn. J. Appl. Phys., 30, 21742177 (1991).CrossRefGoogle Scholar
Kanda, T., Kobayashi, Y., Kurosawa, M., Yasui, H. and Higuchi, T., J. Appl. Phys., 40, 55435546 (2001).CrossRefGoogle Scholar
Wu, Z., Kumagai, N. and Yoshimura, M., Chem. Mater., 12, 33563361 (2000).CrossRefGoogle Scholar
Sundarakannan, B., Kakimoto, K. and Ohsato, H., J. Appl. Phys., 94, 51825187,(2003).CrossRefGoogle Scholar
Kamo, T., Nishida, K., Akiyama, K., Sakai, J., Katoda, T. and Funakubo, H., Jpn. J. Appl. Phys., 46, 69876990, (2007).CrossRefGoogle Scholar
Einishi, H., Ishikawa, M., Nakajima, M., Yasui, S., Yamada, T., Kurosawa, M. and Funakubo, H., Key Eng. Mater., 485, 199202 (2011).CrossRefGoogle Scholar
Ishikawa, M., Einishi, H., Nakajima, M., Hasegawa, T., Morita, T., Saijo, Y., Kurosawa, M. and Funakubo, H., Jpn. J. Appl. Phys., 49, 07HF01 1-4 (2010).Google Scholar
Ishikawa, M., Yazawa, K., Yasui, S., Fujisawa, T., Hasegawa, T., Yamada, T., Morita, T., Kurosawa, M. and Funakub, H., Jpn. J. Appl. Phys., 48, 09KA14 (2009).Google Scholar