Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T13:57:35.843Z Has data issue: false hasContentIssue false

Low Temperature Processing for Multilevel Interconnection and Packaging

Published online by Cambridge University Press:  25 February 2011

T.-M. Lu
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180
J. F. McDonald
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180
S. Dabral
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180
G.-R. Yang
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180
L. You
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180
P. Bai
Affiliation:
Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180
Get access

Abstract

The future high density multilevel interconnection and packaging requires that the combination of the insulator and conductor layers has a low RC value. Thermal stress and diffusion during processing are issues of great concern in the high density multilevel structures. The problem can be alleviated by a proper choice of materials and processes that do not require high temperature. In this paper we propose to use parylene and its derivatives (dielectric constant 2.3–2.6) as the possible interlayer dielectrics and Cu (bulk resistivity ∼1.7 μ Ω-cm) as the conductor. Parylene can be vapor-deposited and cured at room temperature. The metallization of Cu has been achieved at room temperature using the newly developed partially ionized beam deposition technique. This technique has been shown to grow high quality metal films with low resistivity at low substrate temperatures. The interaction between Cu and parylene, including adhesion and diffusion, is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] For a review, see Majid, N., Dabral, S., and Mcdonald, J. F., J. Electronic Materials, 18, 301 (1989).CrossRefGoogle Scholar
[2] Mei, S.-N. and Lu, T.-M., J. Vac. Sci. Technol. A6, 9 (1988).CrossRefGoogle Scholar
[3] Yang, G.-R., Bai, P., Lu, T.-M., and Lau, W. M., J. Appl. Phys. 66, 4519 (1989).CrossRefGoogle Scholar
[4] Brown, C. J. and Farthing, A. C., J. Chem. Soc. 3270 (1953).Google Scholar
[5] Gorham, W. F. and Yeh, J. T. C., J. Organic Chem. 34, 2366 (1965);Google Scholar
Chow, S. W., Pilato, L.A. and Wheelwright, W. L., J. Organic Chem. 35, 20 (1966).CrossRefGoogle Scholar
[6] Joesten, B. L., J. Appl. Polym. Sci. 18, 439 (1974).CrossRefGoogle Scholar
[7] Kubo, S. and Wunderlich, B., J. Polym. Sci. 10, 1949 (1972).Google Scholar
[8] Niegisch, W. D., J. Appl. Phys. 37, 4041 (1966).CrossRefGoogle Scholar
[9] Kubo, S. and Wunderlich, B., J. Appl. Phys. 42, 4565 (1971).CrossRefGoogle Scholar
[10] Yeh, J. T. C. and Grebe, k. R., J. Vac. Sci. Technol. A1, 604 (1983).CrossRefGoogle Scholar
[11] Haight, R., White, R. C., Silverman, B. D., and Ho, P. S., J. Vac. Sci. Technol. A6, 2188 (1988).CrossRefGoogle Scholar
[12] Bai, P., Yang, G.-R., and Lu, T.-M., Appl. Phys. Lett. 56, 198 (1990).CrossRefGoogle Scholar
[13] Yapsir, A. S., Lu, T.-M., and Lanford, W. A., Appl. Phys. Lett. 52, 1962 (1988).CrossRefGoogle Scholar
[14] Yapsir, A. S., You, L., Lu, T.-M., and Madden, M., J. Mater. Res. 4, 343 (1989).CrossRefGoogle Scholar
[15] Roy, R. A., Cuomo, J. J., and Yee, D. S., J. Vac. Sci. Technol. A6, 1621 (1988).CrossRefGoogle Scholar
[16] Selvaraj, R., Yang, S.-N., McDonald, J. F., and Lu, T.-M., Proc. IEEE VLSI Multilevel Interconnection Conference (Electron Devices Society, New York, 1987), p. 440.Google Scholar