Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T06:59:57.455Z Has data issue: false hasContentIssue false

Low Temperature Synthesis of Si-C-N and C-N Films by IR-laser Assisted ECR-PECVD

Published online by Cambridge University Press:  10 February 2011

Shen Zhu
Affiliation:
USRA/SSL, Marshall Space Flight Center, Huntsville, AL 35812, shen.zhu@msfc.nasa.gov
H. W. White
Affiliation:
Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211
Get access

Abstract

A new synthesizing method, IR-laser-assisted electron-cyclotron-resonance plasma-enhanced chemical vapor deposition (LA-ECR-PECVD), has been used to fabricate Si-C-N and C-N films on steel substrates at low temperatures (< 650 °C). Methane/nitrogen or carbon dioxide/nitrogen gases are dissociated to methane radicals and nitrogen plasma by the IR-laser and ECR to enhance the species' energy. An IR-laser beam (pulsed Nd:YAG laser, 1064 nm) was introduced into the growth chamber for two purposes: (1) to add Si atoms by ablating a Si target, and (2) to enhance the plasma concentration in the gas phase. An infrared vibration mode located at 1256 cm-l wavenumber was observed in Si-C-N and C-N films, although these films have an amorphous phase. The C-N film also has a Raman shift at 1276 cm-l. The AFM images reveal many islands with a size ranging from 50 nm – 150 nm in films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, A. Y. and Cohen, M. L., Science 245, 841 (1989).Google Scholar
2. Li, D., Lopez, S., Chung, Y., Wong, M., and Sproul, W. D., J. Vac. Sci. Technol. A, 13, 1063 (1995).Google Scholar
3. Kumar, S. and Tansley, T. L., J. Appl. Phys., 76, 4309 (1994).Google Scholar
4. Yu, K. M., Cohen, M. L., Haller, E. E., Hansen, W. L., Liu, A. Y., and Wu, I. C., Phys. Rev. B, 49, 5034 (1994).Google Scholar
5. Chen, L. C., Yang, C. Y., Bhusari, D. M., Chen, K. H., Lin, M. C., Lin, J. C., and Chuang, T. J., Diamond Relat. Mater., 5, 514 (1996).Google Scholar
6. Bousetta, A., Lu, M., Bensaoula, A., and Schultz, A., Appl. Phys. Left., 65, 696 (1994).Google Scholar
7. Marton, D., Boyd, K. J., Al-Bayati, A. H., Todorov, S. S., and Rabalais, J. M., Phys. Rev. Left., 73, 118 (1994).Google Scholar
8. Ogata, K., Chubaci, J. F. D., and Fijimoto, F. J. Appl. Phys., 76, 3791 (1994).Google Scholar
9. Niu, C. N., Lu, Y. Z., and Lieber, C. M., Science, 261, 334 (1993).Google Scholar
10. Veprek, S., Weidmann, J., and Glatz, F., J. Vac. Sci. Technol. A, 13, 2914 (1995).Google Scholar
11. Rodriguez-Reinoso, F. and Narciso, J., Adv. Mater. 2, 209 (1995).Google Scholar
12. Wixom, M. R., J. Am. Ceram. Soc., 73, 1973 (1990).Google Scholar
13. Widany, J., Weich, F., Kohler, Th., Porezag, D., and Frauenheim, Th., Diamond Relat. Mater., 5, 1031 (1996)Google Scholar
14. Badzian, A. and Badzian, T., Diamond Relat. Mater., 5, 1051 (1996).Google Scholar
15. Wada, N., Solin, S. A., Wong, J., and Prochazka, S., J. Non-Crystal. Solids, 43, 7 (1981).Google Scholar