Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T16:22:50.434Z Has data issue: false hasContentIssue false

Luminescence from erbium oxide grown on silicon

Published online by Cambridge University Press:  21 March 2011

E. Nogales
Affiliation:
Universidad Complutense de Madrid, Dpto. Física de Materiales, 28040 Madrid, Spain.
B. Méndez
Affiliation:
Universidad Complutense de Madrid, Dpto. Física de Materiales, 28040 Madrid, Spain.
J. Piqueras
Affiliation:
Universidad Complutense de Madrid, Dpto. Física de Materiales, 28040 Madrid, Spain.
R. Plugaru
Affiliation:
Inst. of Microtechnology, Bucharest, Romania.
J. A. García
Affiliation:
Universidad del Pais Vasco, Dpto. Física Aplicada II, Vizcaya, Spain.
T. J. Tate
Affiliation:
Imperial College, Dpt. of Electrical and Electronic Engineering, London, United Kingdom.
Get access

Abstract

The luminescence properties of erbium oxide grown on crystalline and amorphous silicon substrates were studied by means of photo- and cathodoluminescence techniques. Differences in the luminescence spectra for samples grown on the two types of substrates used are explained in terms of the different types of erbium centers formed by taking into account the substrate properties and the thermal treatments during growth. For comparison, erbium implanted and oxygen coimplanted crystalline and amorphous silicon have been also investigated by luminescence techniques. In the implanted samples, the sharp transitions from erbium ions in the visible range were quenched and the main emission corresponds to the intraionic transitions in Er3+ ions in the infrared range peaked at 1,54 μm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fujii, M., Yoshida, M., Hayashi, S., and Yamamoto, K., J. Appl. Phys. 84, 4525 (1998).Google Scholar
2. Citrin, P.H., Northrup, P.A., Birkhahn, R. and Steckl, A.J., Appl. Phys. Lett. 76, 2865 (2000).Google Scholar
3. Michel, J., Benton, J. L., Ferrante, R. F., Jacobson, D. C., Eaglesham, D. J., J. Appl. Phys. 70,2672 (1991).Google Scholar
4. Kasuya, A. and Suezawa, M., Appl. Phys. Lett. 71, 2728 (1997).Google Scholar
5. Przybylinska, H., Jantsch, W., Suprun-Belevitch, Yu., Stepikhova, M., Palmetshofer, L., Hendorfer, G., Kozanecki, A., Wilson, R.J., Sealy, B.J., Phys. Rev. B 54, 2532 (1996).Google Scholar
6. Polman, A., J. Appl. Phys. 82, 1 (1997).Google Scholar
7. Heikenfeld, J., Lee, D.S., Garter, M., Birkhahn, R., and Steckl, A.J., Appl. Phys. Lett. 76, (2000).Google Scholar
8. Zanatta, A.R., Ribeiro, C.T.M., and Jahn, U., Appl. Phys. Lett. 79, 488 (2001).Google Scholar
9. Nogales, E., Méndez, B., Piqueras, J., Plugaru, R., Coraci, A. and García, J. A., (to be published).Google Scholar
10. Jaba, N., Kanoun, A., Mejri, H., Selmi, A., Alaya, S., and Maaref, H., J. Phys: Condens. Matter, 12, 4523 (2000).Google Scholar