No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
We have measured the magnetic Compton profile (MCP) of ordered and disordered Fe 3Pt samples both above and below their Curie temperature. From these measurements, we have determined the average moment per atom at room temperature to be 2.81μB ± 0.04μB for disordered Fe3Pt and 1.78μB ± 0.05μB for ordered Fe3Pt. At temperatures above Tc, we measured a substantial reduction in the moment (0.6μB ± 0.10μB for disordered Fe3Pt and 0.64μB ± 0.13μB ± for ordered Fe3Pt) and a change in the shape of the MCP. This suggests that the mechanism behind the Invar effect in Fe3Pt can be described by a high-spin to low-spin magnetic phase transition. The experimental MCPs for both ordered and disordered Fe3 Pt are analyzed within the framework of the Weiss 2γ model.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.