Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-22T09:14:26.708Z Has data issue: false hasContentIssue false

Magnetic Compton Scattering Studies of the Invar Effect in Fe3Pt

Published online by Cambridge University Press:  15 February 2011

C. J. Yahnke
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
G. Srajer
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
D. R. Haeffner
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
D. M. Mills
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
L. Assoufid
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

We have measured the magnetic Compton profile (MCP) of ordered and disordered Fe 3Pt samples both above and below their Curie temperature. From these measurements, we have determined the average moment per atom at room temperature to be 2.81μB ± 0.04μB for disordered Fe3Pt and 1.78μB ± 0.05μB for ordered Fe3Pt. At temperatures above Tc, we measured a substantial reduction in the moment (0.6μB ± 0.10μB for disordered Fe3Pt and 0.64μB ± 0.13μB ± for ordered Fe3Pt) and a change in the shape of the MCP. This suggests that the mechanism behind the Invar effect in Fe3Pt can be described by a high-spin to low-spin magnetic phase transition. The experimental MCPs for both ordered and disordered Fe3 Pt are analyzed within the framework of the Weiss 2γ model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Guillaume, C.E., Compt. Rend. 125, 235 (1896).Google Scholar
[2] Schlosser, W.F., J. Phys. Chem. Solids 32, 939 (1971).Google Scholar
[3] Jo, T., J. Phys. Soc. Jpn. 40, 715 (1976).Google Scholar
[4] Wohlfarth, E.P., Phys. Lett. 28A, 569 (1969).Google Scholar
[5] Shimizu, M., J. Magn. Magn. Mater. 10, 231 (1979).Google Scholar
[6] Dubinin, S.F., Sidorov, S.K., and Valiev, E.Z., Phys. Status Solidi B 46, 337 (1971).Google Scholar
[7] Kisker, E., Wassermann, E.F., and Carbone, C., Phys. Rev. Lett. 58, 1784 (1987).Google Scholar
[8] Stahler, S., Knulle, M., Schutz, G., Fischer, P., Welzel-Gerth, S., and Buchholz, B., J. Appl. Phys. 73, 6063 (1993).Google Scholar
[9] Weiss, R.J., Proc. Phys. Soc. London 82, 281 (1963).Google Scholar
[10] Hillert, M., unpublished work discussed by P. Miodownik, Calphad 1,133 (1977).Google Scholar
[11] Bendick, W., Ettwig, H. H., and Pepperhoff, W., J. Magn. Magn. Mater. 10, 214 (1979).Google Scholar
[12] Matsui, M. and Chikazumi, S., J. Phys. Soc. Japan 45, 458 (1978).Google Scholar
[13] Wassermann, E.F., J. Magn. Magn. Mater. 100, 346 (1991).Google Scholar
[14] Wassermann, E.F., Physica Scr. T 25, 209 (1989).Google Scholar
[15] Wassermann, E.F., Festkorperprobleme - Advances in Solid State Phys. 27, 85 (1987).Google Scholar
[16] Cooper, M.J., Laundry, D., Candwell, D.A., Timms, D.N., Holt, R.S., and Clark, G., Phys. Rev. B 34, 5984 (1986).Google Scholar
[17] Sakai, N. and Ono, K., Phys. Rev. Lett. 37, 351 (1976).Google Scholar
[18] Mills, D.M., Phys. Rev. B 36, 6178 (1987).Google Scholar
[19] Yahnke, C.J., Srajer, G., Haeffner, D.R., Mills, D.M. and Assoufid, L., Nucl. Inst. and Meth. 347, 128 (1994).Google Scholar
[20] See for example, Compton Scattering, edited by Williams, B. (Mc-Graw-Hill, New York, 1977).Google Scholar
[21] Wakoh, S. and Kubo, Y., J. Magn. Mater. 5, 202 (1977).Google Scholar