Published online by Cambridge University Press: 01 February 2011
The ubiquity of iron oxide minerals and their ability to retain metals on their surface can represent an important retardation factor to the mobility of radionuclides. In a deep repository for the spent nuclear fuel, the intrusion of the groundwater might produce the anoxic corrosion of the iron, with magnetite as one of the end-products. In this study, as expected considering the strontium speciation in solution, strontium is sorbed onto magnetite at alkaline pH values while at acidic pH the sorption is negligible. Magnetite is able to sorb more than the 50% of the strontium from a 8·10-6 mol·dm-3 solution at the pH range representative of most groundwater (7-9). A surface complexation model has been applied to the experimental data, allowing to explain the results using the Diffuse Layer Model (DLM) and considering the formation of the inner-sphere complex >FeOHSr2+ (with a calculated logK=2.7±0.3). Considering these data, the magnetite capacity to retain strontium and other radionuclides is discussed