Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T03:20:17.793Z Has data issue: false hasContentIssue false

Magnetization Effects in bulk YFeO3 and their dependency on electric field strength and temperature as a basis for thin film investigation of Multiferroic Technology

Published online by Cambridge University Press:  03 March 2011

A. Hinckley
Affiliation:
Dept. of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, Missouri-65897, USA
R.K. Gupta
Affiliation:
Dept. of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, Missouri-65897, USA
P.K. Kahol
Affiliation:
Dept. of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, Missouri-65897, USA
K. Ghosh
Affiliation:
Dept. of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, Missouri-65897, USA
Get access

Abstract

Multiferroics, the study of materials which possess ferromagnetic and ferroelectric ordering in a single phase, has become an area of prominent research. Moreover, this behavior has been extensively studied in materials which possess a perovskite crystal structure such as BiFeO3 and YMnO3. Due to their weak saturation magnetic moment, many rare-earth orthoferrites are currently of extreme interest. Utilizing a solid-state reaction between Y2O3 and Fe2O3 we have developed the rare-earth orthoferrite YFeO3 and conducted a bulk material study to determine this material’s availability for thin film multiferroic research. The absence of Y2O3 and Fe2O3 impurities was confirmed using Copper-Kα XRD. Examination of the dependence of the magnetization M on the temperature T was conducted to determine the reliability of multiferroic behavior across varying temperatures in conjunction with the investigation of the dependence of M on the electric field strength H. Results clearly display ferromagnetic behavior in our bulk material, providing ample evidence that our bulk material is an excellent candidate for thin film studies. Future studies on multiferroic YFeO3 thin films grown via pulsed laser deposition on Lanthanum Aluminate substrates will be conducted. Detailed data will be provided via XRD and SQUID to confirm magnetic properties while impurities are non-existent in our thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Van Aken, B.B., Palstra, T.T.M., Filippetti, A., and Spaldin, N.A., Nat. Mater. 3, 164170 (2004).Google Scholar
2. Scola, J., Noun, W., Popova, E., Fouchet, A., Dumont, Y., Keller, N., Lejay, P., Sheikin, I., Demuer, A., and Pautrat, A., Phys. Rev. B. 81, 174409 (2010).Google Scholar
3. Mathur, S., Veith, M., Rapalaviciute, R., Shen, H., Goya, G.F., Martins Filho, W.L., and Berquo, T., Chem. Mater. 16, 19061913 (2004).Google Scholar
4. Ohkoshi, S., Hozumi, T., and Hashimoto, K., Phys. Rev. B. 64, 132404 (2001).Google Scholar
5. Fert, A., Rev. Mod. Phys. 80, 15171530 (2008).Google Scholar
6. Pradhan, D.K., Choudhary, R.N.P., Rinaldi, C., and Katiyar, R.S., J. App. Phys. 106, 024102 (2009).Google Scholar
7. Rossol, F.C., Phys. Rev. Let. 24, 18 (1970).Google Scholar
8. Kagawa, F., Mochizuki, M., Onose, Y., Murakawa, H., Kaneko, Y., Furukawa, N., and Tokura, Y., Phys. Rev. Let. 102, 057604 (2009).Google Scholar
9. Schrettle, F., Lunkenheimer, P., Hemberger, J., Ivanov, V. Yu., Mukhin, A.A., Balbashov, A.M., and Loidl, A., Phys. Rev. Let. 102, 207208 (2009).Google Scholar
10. Bea, H., Bibes, M., Ott, F., Dupe, B., Zhu, X.H., Petit, S., Fusil, S., Deranlot, C., Bouzehouane, K., and Barthelemy, A., Phys. Rev. Let. 100, 017204 (2008).Google Scholar
11. Shen, H., Xu, J., Wu, A., Yu, J., Liu, Y., and Luo, L., Cryst. Res. Technol. 42, 10 (2007).Google Scholar
12. Hu, J., Phys. Rev. Let. 100, 077202 (2008).Google Scholar
13. Dawber, M., Rabe, K.M., and Scott, J.F., Rev. Mod. Phys. 77, 10831130 (2005).Google Scholar
14. Katsnelson, M.I., Irkhin, V. Yu., Chioncel, L., Lichtenstein, A.I., de Groot, R.A., Rev. Mod. Phys. 80, 315378 (2008).Google Scholar
15. Abe, N., Taniguchi, K., Ohtani, S., Takenobu, T., Iwasa, Y., and Arima, T., Phys. Rev. Let. 99, 227206 (2007).Google Scholar
16. Seki, S., Onose, Y., and Tokura, Y., Phys. Rev. Let. 101, 067204 (2008).Google Scholar
17. Lin, Y.H., Yuan, J., Zhang, S., Zhang, Y., Liu, J., Wang, Y., and Nan, C.W., Appl. Phys. Let. 95, 033105 (2009).Google Scholar
18. Tokunaga, Y., Iguchi, S., Arima, T., and Tokura, Y., Phys. Rev. Let. 101, 097205 (2008).Google Scholar