Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T06:07:05.417Z Has data issue: false hasContentIssue false

Magnetization study of the kinetic arrest of martensitic transformation in as-quenched Ni52.2Mn34.3In13.5 melt spun ribbons

Published online by Cambridge University Press:  05 March 2013

F.M. Lino-Zapata
Affiliation:
Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055 Col. Lomas 4ª, San Luis Potosí, S.L.P. 78216, México.
J.L. Sánchez Llamazares
Affiliation:
Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055 Col. Lomas 4ª, San Luis Potosí, S.L.P. 78216, México.
D. Ríos-Jara
Affiliation:
Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055 Col. Lomas 4ª, San Luis Potosí, S.L.P. 78216, México.
A.G. Lara-Rodríguez
Affiliation:
Instituto de Investigaciones en Materiales, UNAM, Circuito Exterior s/n, Ciudad Universitaria, México D.F. 04510, México.
T. García-Fernández
Affiliation:
Universidad Autónoma de la Ciudad de México, Prolongación San Isidro 151,Col. San Lorenzo Tezonco, México DF, C.P. 09790, México
Get access

Abstract

The kinetic arrest of martensitic transformation (MT) has been observed in as-solidified Ni52.2Mn34.3In13.5 melt spun ribbons. The main characteristics of this unusual field-induced magneto-structural phenomenon have been determined through a dc magnetization study. The sample studied was fabricated by rapid solidification using the melt spinning technique at a high quenching rate of 48 ms-1. At room temperature, it is a single phase austenite (AST) with the bcc B2-type crystal structure and Curie temperature of TCA=285 K. With decreasing temperature, the austenite phase transforms into the martensite phase (MST) with TCM≈185 K at a starting martensitic transition temperature of MS=275 K. A moderate but progressive kinetic arrest of the AST to MST transformation has been observed for magnetic field values above H=10 kOe and was studied up to Hmax= 90 kOe. The metastable character of the non-equilibrium field-cooled state is revealed by the decreasing behavior of the saturation magnetization under a large magnetic field of 50 kOe after temperature cycling from 10 K to 150 K. The total magnetization difference Δσ between the zero field-cooling and field-cooling pathways of the temperature dependence of magnetization shows irreversible and reversible components and the former decreases with decreasing temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A., Suard, E., Ouladdiaf, B., Phys. Rev. B, 75, 104414 (2007).CrossRefGoogle Scholar
Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A., Nature Mater. 4, 450 (2005).CrossRefGoogle Scholar
Pathak, A.K., Khan, M., Dubenko, I., Stadler, S., Ali, N., Appl. Phys. Lett. 90, 262504 (2007).CrossRefGoogle Scholar
Bhobe, P.A., Priolkar, K.R., Nigam, A.K., Appl. Phys. Lett. 91, 242503 (2007).CrossRefGoogle Scholar
Koyama, K., Okada, H., Watanabe, K., Kanomata, T., Kainuma, R., Ito, W., Oikawa, K., Ishida, K., Appl. Phys. Lett. 89, 182510 (2006).CrossRefGoogle Scholar
Yu, S.Y., Liu, Z.H., Liu, G.D., Cheng, J.L., Cao, Z.X., Wu, G.H., Zhang, B., Zhang, X.X., Appl. Phys. Lett. 89, 162503 (2006).CrossRefGoogle Scholar
Sharma, V.K., Chattopadhyay, M.K., Shaeb, K.H.B., Chouhan, A., Roy, S.B., Appl. Phys. Lett. 89, 222509 (2006).CrossRefGoogle Scholar
Koyama, K., Watanabe, K., Kanomata, T., Kainuma, R., Oikawa, K., Ishida, K., Appl. Phys. Lett. 88, 132505 (2006).CrossRefGoogle Scholar
Krenke, T., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A., Phys. Rev. B 73, 174413 (2006).CrossRefGoogle Scholar
Sharma, V.K., Chattopadhyay, M.K., Roy, S.B., Phys. Rev. B 76, 140401R (2007).CrossRefGoogle Scholar
Umetsu, R.Y., Ito, W., Ito, K., Koyama, K., Fujita, A., Oikawa, K., Kanomata, T., Kainuma, R., Ishida, K., Scripta Materialia 60, 25 (2009).CrossRefGoogle Scholar
Ito, W., Ito, K., Umetsu, R.Y., Kainuma, R., Koyama, K., Watanabe, K., Fujita, A., Oikawa, K., Ishida, K., Kanomata, T., Appl. Phys. Lett. 92, 021908 (2008).CrossRefGoogle Scholar
Sharma, V.K., Chattopadhyay, M.K., Nath, S.K., Sokhey, K.J.S., Kumar, R., Tiwari, P., Roy, S.B., J. Phys.: Condens. Matter, 22, 486007 (2010).Google Scholar
Sanchez Llamazares, J.L., Hernando, B., Suñol, J.J., Garcia, C., Ross, C.A., J. Appl. Phys. 107, 09A956 (2010).CrossRefGoogle Scholar
Sanchez, T., Sánchez Llamazares, J.L., Hernando, B., Santos, J.D., Sánchez, M.L., Perez, M.J., Sato Turtelli, R., Grössinger, R., Materials Science Forum, 635, 81 (2010).CrossRefGoogle Scholar
Sánchez Llamazares, J.L., Flores Zuñiga, H., Sánchez Valdés, C.F., Ross, C.A., García, C., J. Appl. Phys. 111, 07A932 (2012).CrossRefGoogle Scholar