Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T00:18:03.247Z Has data issue: false hasContentIssue false

Materials Analysis with X-Ray Rocking Curves

Published online by Cambridge University Press:  25 February 2011

Bruce M. Paine*
Affiliation:
Electrical Engineering 116-81, California Institute of Technology, Pasadena CA 91125
Get access

Abstract

We review the technique of x-ray double crystal diffractometry as applied to measurement of microscopic profiles of strain in semiconductor materials. The first step in this technique is the extraction of average strains and layer thicknesses directly from the x-ray rocking curves. Profiles of strains with depth are then found by iterative fitting of the experimental rocking curves with trial distributions, incorporated into a theoretical model for the diffraction. The kinematic approximation is accurate for thicknesses up to 1μm in most semiconductors. For greater thicknesses, the more precise dynamical model must be applied.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Segmüller, A. and Murakami, M., in “Analytical Techniques for Thin Films”, Tu, K. N. and Rosenberg, R., eds. (Academic, New York, 1986). To be published.Google Scholar
2. Bonse, U., Z. Physik 153, 278 (1958).Google Scholar
3. Zeyfang, R., J. Appl. Phys. 41, 3718 (1970).Google Scholar
4. Hattanda, T. and Takeda, A., Japan. J. Appl. Phys. 12, 1104 (1973).Google Scholar
5. Bartels, W. J., J. Vac. Sci. Technol. B1, 338 (1983).Google Scholar
6. Neumann, D. A., Zabel, H. and Morkoc, H., Appl. Phys. Lett. 43, 59 (1983).Google Scholar
7. Speriosu, V. S., J. Appl. Phys. 52, 6094 (1981).Google Scholar
8. Vreeland, T. Jr, 1986, submitted for publication.Google Scholar
9. Stacy, W. T. and Janssen, M. M., J. Cryst. Growth 27, 282 (1974).Google Scholar
10. Speriosu, V. S. and Vreeland, T. Jr., J. Appl. Phys. 56, 1591 (1984).Google Scholar
11. Quillec, M., Goldstein, L., Roux, G. Le, Burgeat, J. and Primot, J., J. Appl. Phys. 55, 2904 (1984).Google Scholar
12. Speriosu, V. S., Glass, H. L. and Kobayashi, T., Appl. Phys. Lett. 34, 539 (1979).Google Scholar
13. Kyutt, R. N., Petrashen, P. V. and Sorokin, L. M., phys. stat. sol. (a) 60, 381 (1980).Google Scholar
14. deRoode, W. H. and Smits, J. W., J. Appl. Phys. 52, 3969 (1981).Google Scholar
15. Paine, B. M., Hurvitz, N. N. and Speriosu, V. S., 1986, submitted for publication.Google Scholar
16. Biersack, J. P. and Haggmark, L. G., Nucl. Instr. and Meth. 174, 257 (1980).Google Scholar
17. Speriosu, V. S., Paine, B. M., Nicolet, M-A. and Glass, H. L., Appl. Phys. Lett. 40, 604 (1982).Google Scholar
18. Paine, B. M., Speriosu, V. S. and Hurvitz, N. N., 1986, submitted for publ ication.Google Scholar
19. Cembali, F., Mazzone, A. M. and Servidori, M., phys. stat. sol. (a) 91, K125 (1985).Google Scholar
20. Tkachev, V. D., Holzer, G. and Chelyadinskii, A. R., phys. stat. sol. (a) 85, K43 (1984).Google Scholar
21. MacNeal, B. E. and Speriosu, V. S., J. Appl. Phys. 52, 3935 (1981).Google Scholar
22. Larson, B. C. and Barhorst, J. F., J. Appl. Phys. 51, 3181 (1980).Google Scholar
23. Nemiroff, M. and Speriosu, V. S., J. Appl. Phys. 58, 3735 (1985).Google Scholar
24. Vreeland, T. Jr. and Jayadev, T. S., Mat. Res. Soc. Symp. Proc. (1986), in press.Google Scholar
25. Pribat, D., Dieumegard, D., Croset, M., Cohen, C., Nipoti, R., Siejka, J., Bentini, G. G., Correra, L. and Servidori, M., Nucl. Instr. and Meth. 209/210, 737 (1983).Google Scholar
26. Speriosu, V. S., Nicolet, M-A., Tandon, J. L. and Yeh, Y. C. M., J. Appl. Phys. 57, 1377 (1985).Google Scholar
27. Hamdi, A. H., Nicolet, M-A., Kao, Y. C., Tejwani, M. and Wang, K. L., Mat. Res. Soc. Symp. Proc. 41, 355 (1985).Google Scholar
28. Hamdi, A. H., Speriosu, V. S., Tandon, J. L. and Nicolet, M-A., Phys. Rev. 31 2343 (1985).Google Scholar
29. Vreeland, T. Jr. and Paine, B. M., Proceedings of the 1986 International Conference on Metallurgical Coatings, J. Vac. Sci. Technol. A, (1986), submitted for publication.Google Scholar
30. Vreeland, T. Jr., unpublished.Google Scholar
31. Takagi, S., Acta Cryst. 15, 1311 (1962); J. Phys. Soc. Japan 26, 1239 (1969).Google Scholar
32. Taupin, D., Bull. Soc. Franc. Miner. Crist. 87, 469 (1964).Google Scholar
33. Burgeat, J. and Colella, R., J. Appl. Phys. 40, 3505 (1969).Google Scholar
34. Cembali, F., Servidori, M., Gabilli, E. and Lotti, R., phys. stat. sol. (a) 87, 225 (1985); phys. stat. sol (a) 92, 336 (1985).CrossRefGoogle Scholar
35. Burgeat, J. and Taupin, D., Acta Cryst. A24, 99 (1968).Google Scholar
36. Jukuhara, A. and Takano, Y., Acta Cryst. A33, 137 (1977), and J. Appl. Cryst. 10, 287 (1977).Google Scholar
37. Klar, B. and Rustichelli, F., Nuovo Cimento 13B, 249 (1973).Google Scholar
38. Halliwell, M. A. G., Lyons, M. H. and Hill, M. J., J. Cryst. Growth 68, 523 (1984).CrossRefGoogle Scholar
39. Wie, C. R., Tombrello, T. A. and Vreeland, T. Jr., Caltech preprint BB-33 (1985), to be published.Google Scholar
40. Wie, C. R., Tombrello, T. A. and Vreeland, T. Jr., Caltech preprint BB-30 (1985), to be published.Google Scholar
41. Hill, M. J., Tanner, B. K. and Halliwell, M. A. G., Mat. Res. Soc. Symp. Proc. 37, 53 (1985).Google Scholar
42. Macrander, A. T. and Strege, K. E., J. Appl. Phys. 59, 442 (1986).Google Scholar