Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T01:11:38.507Z Has data issue: false hasContentIssue false

MBE Growth and Characterization of Composite InAlAs/In(Ga)As Vertically Aligned Quantum Dots

Published online by Cambridge University Press:  10 February 2011

A. R. Kovsh
Affiliation:
Ioffe Physico-Technical institute Russian Academy of Sciences, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia, kovsh@beam.ioffe.rssi.ru
A. E. Zhukov
Affiliation:
Ioffe Physico-Technical institute Russian Academy of Sciences, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia
A.Yu. Egorov
Affiliation:
Ioffe Physico-Technical institute Russian Academy of Sciences, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia
N. N. Maleev
Affiliation:
Ioffe Physico-Technical institute Russian Academy of Sciences, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia
S. S. Mikhrin
Affiliation:
Ioffe Physico-Technical institute Russian Academy of Sciences, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia
V. M. Ustinov
Affiliation:
Ioffe Physico-Technical institute Russian Academy of Sciences, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia
V. A. Odnoblyudov
Affiliation:
Ioffe Physico-Technical institute Russian Academy of Sciences, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia
Yu. G. Musikhin
Affiliation:
Ioffe Physico-Technical institute Russian Academy of Sciences, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia
D. A. Livshits
Affiliation:
Ioffe Physico-Technical institute Russian Academy of Sciences, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia
A. F. Tsatsul'nikov
Affiliation:
Ioffe Physico-Technical institute Russian Academy of Sciences, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia
M. V. Maximov
Affiliation:
Ioffe Physico-Technical institute Russian Academy of Sciences, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia
Yu. M. Shernyakov
Affiliation:
Ioffe Physico-Technical institute Russian Academy of Sciences, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia
B. V. Volovik
Affiliation:
Ioffe Physico-Technical institute Russian Academy of Sciences, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia
D. A. Bedarev
Affiliation:
Ioffe Physico-Technical institute Russian Academy of Sciences, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia
N. N. Ledentsov
Affiliation:
Ioffe Physico-Technical institute Russian Academy of Sciences, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia
P. S. Kop'ev
Affiliation:
Ioffe Physico-Technical institute Russian Academy of Sciences, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia
Zh. I. Alferov
Affiliation:
Ioffe Physico-Technical institute Russian Academy of Sciences, 26 Politekhnicheskaya, St. Petersburg, 194021, Russia
A. A. Suvorova
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
P. Werner
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
D. Bimberg
Affiliation:
Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany
Get access

Abstract

In the present work we study the effect of vertical alignment in the quantum dot array formed by successive deposition of several rows of InAlAs and InGaAs quantum dots separated by thin AIGaAs spacer layers. Transmission electron microscopy and photoluminescence studies revealed that the InAlAs QDs characterized by high areal density force InGaAs to be transformed into the denser array as compared to the case of spontaneous transformation. Using denser array of composite quantum dots in the active region of a diode laser leads to the increase in modal gain, decrease in internal loss, and decrease in the threshold current density for short cavity diodes. Room temperature continuous wave output power as high as 3.3 W at 0.87 µm is achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goldstein, L., Glas, F., Marzin, J. Y., Charasse, M. N., and Roux, G. Le, Appl. Phys. Lett. 47(10), 10991101 (1985).10.1063/1.96342Google Scholar
2. Asada, M., Miyamoto, Y., and Suematsu, Y., J. Quant. Electr. QE–22, 19151921 (1986).10.1109/JQE.1986.1073149Google Scholar
3. Arakawa, Y. and Sakaki, H., Appl. Phys. Lett. 40, 939941 (1982).10.1063/1.92959Google Scholar
4. Ustinov, V. M., A. Yu. Egorov, Kovsh, A. R., Zhukov, A. E., Maksimov, M. V., Tsatsul'nikov, A. F., Gordeev, N. Yu., Zaitsev, S. V., Shernyakov, Yu. M., Bert, N. A., Kop'ev, P. S., Alferov, Zh. I., Ledentsov, N. N., Bohrer, J., Bimberg, D., Kosogov, A. O., Werner, P., Gosele, U., J. Cryst. Growth 175/176, 689695 (1997).10.1016/S0022-0248(96)01021-4Google Scholar
5. Huffaker, D. L., Park, G., Zou, Z., Shchekin, O. B., and Deppe, D. G., Appl.Phys.Lett. 73(18), 25642566 (1998).10.1063/1.122534Google Scholar
6. Heitz, R., Veit, M., Ledentsov, N. N., Hoffmann, A., Bimberg, D., Ustinov, V. M., Kop'ev, P. S., and Alferov, Zh. I., Phys. Rev. B 56, 1043510438 (1997).10.1103/PhysRevB.56.10435Google Scholar
7. Xie, Q., Madhukar, A., Chen, P., and Kobayashi, N., Phys. Rev. Lett. 75, 25422544 (1995).10.1103/PhysRevLett.75.2542Google Scholar
8. Tsatsul'nikov, A. F., Egorov, A. Yu., Zhukov, A. E., Kovsh, A. R., Ustinov, V. M., Ledentsov, N. N., Maksimov, M. V., Volovik, B. V., Suvorova, A. A., Bert, N. A., Kop'ev, P. S., Semiconductors 31(7), 722725 (1997).10.1134/1.1187076Google Scholar
9. Tsatsul'nikov, A. F., Egorov, A. Yu., Kop'ev, P. S., Kovsh, A. R., Ledentsov, N. N., Maximov, M. V., Suvorova, A. A., Ustinov, V. M., Volovik, B. V., Zhukov, A. E., Grundmann, M., Bimberg, D., and Alferov, Zh. I., Appl. Surf. Sci. 123, 381384 (1998).10.1016/S0169-4332(97)00493-5Google Scholar
10. Mukhametzhanov, I., Heitz, R., Zeng, J., Chen, P., and Madhukar, A., Appl. Phys. Lett. 73(13), 18411843 (1998).10.1063/1.122300Google Scholar