Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T14:03:36.871Z Has data issue: false hasContentIssue false

MBE Regrowth Over a Selectively Undercut GaAs Masking Layer

Published online by Cambridge University Press:  22 February 2011

C.C. Hansing
Affiliation:
University of Texas-Austin, Microelectronics Research Center, Department of Electrical and Computer Engineering, Austin, TX 78712
H. Deng
Affiliation:
University of Texas-Austin, Microelectronics Research Center, Department of Electrical and Computer Engineering, Austin, TX 78712
J.M. Reifsnider
Affiliation:
University of Texas-Austin, Microelectronics Research Center, Department of Electrical and Computer Engineering, Austin, TX 78712
D.G. Deppe
Affiliation:
University of Texas-Austin, Microelectronics Research Center, Department of Electrical and Computer Engineering, Austin, TX 78712
B.G. Streetman
Affiliation:
University of Texas-Austin, Microelectronics Research Center, Department of Electrical and Computer Engineering, Austin, TX 78712
Get access

Abstract

We describe the use of molecular beam epitaxy (MBE) for regrowth over a photolithographically defined GaAs shadow mask to fabricate a buried etched void surrounding a vertical-cavity surface-emitting laser (VCSEL). The initial MBE growth consists of a GaAs etch stop layer, followed by an Al0.67Gao.33As spacer layer, and then a GaAs capping layer. After the initial growth, various diameter openings ranging from 2 to10 gtm are photolithographically defined in a photoresist layer, and the top GaAs layer is selectively etched. The exposed LTAlGaAs layer is next selectively etched with the etch time adjusted to undercut the top GaAs layer to create a shadow mask. An MBE regrowthis then performed which consists of alternating layers of GaAs and AlAs. Scanning electron microscopy, surface profiling, and optical microscopy are used to characterize the regrowth.

We have used this shadow masking technique to realize a buried etched void surrounding the optically active part of a VCSEL. A continuous wave room temperature lasing thresholdof 0.47 mA for a 4 [tm device has been achieved, which to our knowledge is the lowest continuous wave room temperature threshold yet reported for a VCSEL.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Choquette, K.D., Hong, M., Freund, R.S., Chu, S.N.G., Mannaerts, J.P., Wetzel, R.C. and Leibenguth, R.E.., Appl. Phys. Lett. 60 (14), 1738 (1992).Google Scholar
[2] Smith, J.S., Derry, P.L., Margalit, S. and Yariv, A., Appl. Phys. Lett. 47 (7), 712 (1985).Google Scholar
[3] Nilsson, S., Gieson, E.V., Arent, D.J., Meier, H.P., Walter, W. and Foster, T., Appl. Phys. Lett. 55 (10), 972 (1989).Google Scholar
[4] Takebe, T., Fujii, M., Yamamoto, T., Fujita, K. and Kobayashi, K., J. Crystal Growth 127, 937 (1993).Google Scholar
[5] Scott, M.D., Riffat, J.R., Griffith, I., Davies, J.I. and Marshall, A.C., J. Crystal Growth 93, 820 (1988).Google Scholar
[6] Hersee, S.D., Barbier, E. and Blondeau, R., J. Crystal Growth 77, 310 (1986).Google Scholar
[7] Tsang, W.T. and Cho, A.Y., Appl. Phys. Lett. 32 (8), 491 (1978).Google Scholar
[8] Beam, E.A., Kao, Y.C. and Yang, J.Y., Appl. Phys. Lett. 58 (2), 152 (1991).Google Scholar
[9] Tsang, W.T. and Cho, A.Y., Appl. Phys. Lett. 30 (6), 293 (1977).Google Scholar
[10] Tsang, W.T., Appl. Phys. Lett. 46 (8), 742 (1985).Google Scholar
[11] Bedair, S.M., Tischler, M.A. and Katsuyama, T., Appl. Phys. Lett. 48 (1), 30 (1986).Google Scholar
[12] Demeester, P., Buydens, L., Moerman, I., Lootens, D. and Daele, P. Van, J. Crystal Growth 107, 161 (1991).Google Scholar
[13] Gulden, K.H., Wu, X., Smith, J.S., Kiesel, P., Höfler, A., Kneissl, M., Riel, P. and Döhler, G.H., Appl. Phys. Lett. 62 (24), 3180 (1993).Google Scholar
[14] Demeester, P., Buydens, L. and Daele, P. Van, Appl. Phys. Lett. 57 (2), 168 (1990).Google Scholar
[15] Fekete, D., Bour, D., Ballantyne, J.M. and Eastman, L.F., Appl. Phys. Lett. 50 (11), 635 (1987).Google Scholar
[16] Rogers, T.J., Lei, C., Deppe, D.G. and Streetman, B.G., Appl. Phys. Lett. 62 (17), 2027 (1993).Google Scholar