Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T00:59:09.630Z Has data issue: false hasContentIssue false

Mean Field Analysis of Orientation Selective Grain Growth Driven By Interface-Energy Anisotropy

Published online by Cambridge University Press:  15 February 2011

J. A. Floro
Affiliation:
Currently at Sandia National Laboratories, Albuquerque, NM 87185-0350.
C. V. Thompson
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
Get access

Abstract

Abnormal grain growth is characterized by the lack of a steady state grain size distribution. In extreme cases the size distribution becomes transiently bimodal, with a few grains growing much larger than the average size. This is known as secondary grain growth. In polycrystalline thin films, the surface energy γs and film/substrate interfacial energy γi vary with grain orientation, providing an orientation-selective driving force that can lead to abnormal grain growth. We employ a mean field analysis that incorporates the effect of interface energy anisotropy to predict the evolution of the grain size/orientation distribution. While abnormal grain growth and texture evolution always result when interface energy anisotropy is present, whether secondary grain growth occurs will depend sensitively on the details of the orientation dependence of γi.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Palmer, J. E., Thompson, C. V., and Smith, H. I., J. Appl. Phys. 62, 2492 (1987).Google Scholar
2. Thompson, C. V., Floro, J., and Smith, H. I., J. Appl. Phys. 67, 4099 (1990).Google Scholar
3. Floro, J.A. and Thompson, C.V., in Thin Film Structures and Phase Stability. Clemens, B.M. and Johnson, W.L., eds. (Mat.Res. Soc. Symp. Proc. Vol. 187, Pittsburgh, PA, 1989), p. 273–8.Google Scholar
4. Wong, C. C., Smith, H. I., and Thompson, C. V., Appl. Phys. Lett. 48, 335 (1986).Google Scholar
5. Kim, H. J. and Thompson, C. V., J. Appl. Phys. 67, 757 (1990).Google Scholar
6. Thompson, C. V., J. Appl. Phys. 58, 763 (1985).Google Scholar
7. Hillert, M., Acta metall. 13, 227 (1965).Google Scholar
8. Lifshitz, I. M. and Slyozov, V. V., J. Phys. Chem. Solids 19, 35 (1961).Google Scholar
9. Atkinson, H. V., Acta metall. 36, 469 (1988).Google Scholar
10. Thompson, C. V., Acta metall. 36, 2929 (1988).Google Scholar
11. Abbruzzese, G. and Lucke, K., Acta Metall. 34, 905 (1986).Google Scholar
12. Eichelkraut, H., Abbruzzese, G. and Lucke, K., Acta metall. 36, 55 (1988).Google Scholar
13. Rollett, A. D., Srolovitz, D. J., and Anderson, M. P., Acta metall. 37, 1227 (1989).Google Scholar
14. Frost, H.J., Hayashi, Y., Thompson, C.V., and Walton, D.T., in Mechanisms of Thin Film Evolution, Yalisove, S. M., Thompson, C. V., and Eaglesham, D. J., eds. (Mat. Res. Soc. Symp. Proc. Vol. 317, Pittsburgh, PA, 1994), p. 485.Google Scholar
15. Floro, J. A. and Thompson, C. V., Acta metall. mater. 41, 1137 (1993).Google Scholar
16. Numerical Recipes, Press, William H., Flannery, Brian, Teukolsky, Saul A., and Vetterling, William T. (Cambridge University Press, Cambridge, 1986), pp. 623–35.Google Scholar
17. Floro, J. A., Ph.D Thesis, MIT Dept. of Materials Science and Engineering, 1992.Google Scholar
18. Mullins, W. W., Acta metall. 6, 414 (1958).Google Scholar
19. Frost, H. J., Thompson, C. V., and Walton, D. T., Acta metall. mater. 38, 1455 (1990).Google Scholar
20. Frost, H. J., Thompson, C. V., and Walton, D. T., Acta metall. mater. 40, 779 (1992).Google Scholar