Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T06:46:40.170Z Has data issue: false hasContentIssue false

Measurements and Simulations of Temperatures in Polyimide During Excimer Laser Ablation

Published online by Cambridge University Press:  01 January 1992

D. P. Brunco
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
Michael O. Thompson
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
C. E. Otis
Affiliation:
IBMT. J. Watson Research Center, Yorktown Heights, NY 10598
P. M. Goodwint
Affiliation:
Mail Stop M888, LANL, Los Alamos, NM 87545
Get access

Abstract

The temperature at the interface between a thin polyimide film and a quartz substrate was monitored as a function of time during KrF (248 nm) laser-induced heating and ablation using thin film NiSi thermistors. These experimental temperature measurements were coupled with heat flow simulations to obtain time-resolved temperature profiles in the polyimide. Thermal properties of the polyimide were estimated by requiring that the simulations reproduce experimental temperature profiles. The peak surface temperature in the polyimide at the onset of ablation was subsequently estimated from these simulations, producing a value of 1660 ± 100 K at the observed ablation threshold fluence of 36 mJ/cm2. Simulations were also used to explore the role of pulse duration on polyimide ablation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Srinivasan, R. and Mayne-Banton, V., Appl. Phys. Lett. 41 576 (1982).Google Scholar
2. Srinivasan, R., Science 234, 559 (1986).Google Scholar
3. Yeh, J. T. C., J. Vac. Sci Technol. A4, 653 (1986).Google Scholar
4. Singleton, D. L., Paraskevopoulos, G., and Taylor, R. S., Chem. Phys. 144, 415 (1990).Google Scholar
5. Brunco, D. P., Thompson, M. O., Otis, C. E., and Goodwin, P. M., J. Appl. Phys. 72, 4344 (1992).Google Scholar
6. Kuper, S. and Stuke, M., Appl. Phys. B 44, 199 (1987); Appl. Phys. Lett. 54, 4 (1989).Google Scholar
7. Frisoli, J. K., Hefetz, Y., Deutsch, T. F., AppI. Phys. B 52, 168 (1991).Google Scholar
8. Kim, H., Postlewaite, J. C., Zyung, T., and Dlott, D. D., Appl. Phys. Lett. 54, 2274 (1989).Google Scholar
9. Furzikov, N. P., Appl. Phys. Lett. 56, 1638 (1990).Google Scholar
10. Cain, S. R., Burns, F. C., and Otis, C. E., J. Appl. Phys. 71, 4107 (1992).Google Scholar
11. Kowalczyk, S. P., Dimitrakopoulos, C. D. and Molis, S. E., Mat. Res. Soc. Symp. Proc. Vol. 227, 55 (1991).Google Scholar
12. Thompson, Michael O., Mat. Res. Soc. Symp. Proc. Vol. 100, 525 (1988).Google Scholar
13. Brunco, D. P., Thompson, M. O., Otis, C. E., Kittl, J. A., and Goodwin, P. M., submitted to Rev. Sci. Instrum.Google Scholar
14. Baeri, P. and Campisano, S. U., Laser Annealing of Semiconductors, ed. by Poate, J. M. and Mayer, James W., (Academic, New York, 1982) p. 75.Google Scholar
15. Arakawa, E. T., Williams, M. W., Ashley, J. C., and Painter, L. R., J. Appl. Phys. 52, 3579 (1981).Google Scholar
16. Brannon, J. H., Lankard, J. R., Baise, A. I., Burns, F., and Kaufman, J., J. Appl. Phys. 58, 2036 (1985).Google Scholar
17. E, P.. Dyer and Sidhu, J., J. Appl. Phys. 57, 1420 (1985).Google Scholar
18. Braun, R., Nowak, R., Hess, P., Oetzmann, H., and Schmidt, C., Appl. Surf. Sci. 43, 352 (1989).Google Scholar
19. Gorodetsky, G., Kazyaka, T. G., Melcher, R. L., and Srinivasan, R., Appl. Phys. Lett. 46, 828 (1985).Google Scholar
20. ‘Kapton Polyimide Film: Summary of Properties’, (DuPont, Wilmington DE, 1988).Google Scholar
21. Kotel'nikov, C.V. and Sidorovich, A. V., Polym. Sci. USSR 25, 3053 (1983). The quadratic fit for specific heat used in simulations was provided by J. H. Brannon from the data in this reference.Google Scholar
22. Philipp, H. R., Cole, H. S., Liu, Y. S., and Sitnik, T. A., Appl. Phys. Lett. 48, 192 (1986).Google Scholar
23. Lambert, David K., Thermal Conductivity 21, ed. by Cremers, C. J. and Fine, H. A., (Plenum, New York, 1990) p. 209. Also see Witek, A., Guerrero, O., and Onn, D. G., Thermal Conductivity 21, p. 177.Google Scholar
24. Choy, C. L., Leung, W. P., and Ng, Y. K., J. Polym. Sci. Polym. Phys. Ed. 25, 1779 (1987).Google Scholar
25. Dijkkamp, D., Gozdz, A. S., Venkatesan, T., and Wu, X. D., Phys. Rev. Lett. 58, 2142 (1987).Google Scholar
26. Mihailov, S. and Duley, W., J. Appl. Phys. 69, 4092 (1991).Google Scholar
27. Taylor, R. S., Singleton, D. L., and Paraskevopoulos, G., Appl. Phys. Lett. 50 1779 (1987).Google Scholar
28. A, D.. Porter and Easterling, K. E., Phase Transformationsin Metals and Alloys, (Van Nostrand Reinhold, London, 1981), p. 213.Google Scholar