No CrossRef data available.
Published online by Cambridge University Press: 15 March 2011
Atomistic simulations are used to better understand the behavior of bundles of single- walled carbon nanotubes that have been placed between two sliding diamond surfaces. A many-body reactive empirical potential for hydrocarbons that has been coupled to a Lennard-Jones potential is used to determine the energies and forces for all the atoms in the simulations. The results indicate that the degree of compression of the nanotube bundle between the nanotubes has a significant effect on the responses of the nanotubes to shear forces. However, no rolling of the nanotubes is predicted in contrast to previous studies of individual nanotubes moving on graphite.