Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T00:36:02.175Z Has data issue: false hasContentIssue false

Mechanical Evaluation of Thermal Transitions in Polymer Nanofibres Using SPM

Published online by Cambridge University Press:  01 February 2011

Wei Wang
Affiliation:
wei.wang@qmul.ac.uk, Queen Mary, University of London, Department of Materials, Mile End Road, London, E1 4NS, United Kingdom, 0044 20 7882 7879, 0044 20 8981 9804
Shuangwu Li
Affiliation:
s.li@qmul.ac.uk, Queen Mary, University of London, Department of Materials, Mile End Road, London, E1 4NS, United Kingdom
Asa H. Barber
Affiliation:
a.h.barber@qmul.ac.uk, Queen Mary, University of London, Department of Materials, Mile End Road, London, E1 4NS, United Kingdom
Get access

Abstract

Polymer nanofibres produced by electrospinning techniques have unique mechanical properties due to their large surface area to volume ratio and potentially high molecular orientation. The effects of temperature on mechanical properties is challenging to measure due to the small fibre diameters produced. In this paper, scanning probe microscopy (SPM) is successfully used to elucidate the mechanical performance of individual electrospun polyvinyl alcohol (PVA) nanofibres over a range of temperatures. As observed in the results, thermal transitions have a dramatic effect on the mechanical behaviour of the nanofibres and are highlighted using SPM techniques analogous to dynamic mechanical thermal analysis but at the nanoscale. Interestingly, nanofibre thermal transitions are shown to be mediated by fibre diameter and the driving force of reducing the surface area of the nanofibre.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H., Adv. Mater. 15, 353 (2003).Google Scholar
2. Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., Ramakrishna, S., Comp. Sci. & Tech. 63, 2223 (2003).Google Scholar
3. Li, D., Xia, Y., Adv. Mater. 16, 1151 (2004).Google Scholar
4. Doshi, J., Reneker, D. H., J. Electrostatics 35, 151 (1995).Google Scholar
5. Reneker, D. H., Chun, I., Nanotechnology 7, 216 (1996).Google Scholar
6. Bognitzki, M., Hou, H., Ishaque, M., Frese, T., Hellwig, M., Schwarte, C., Schaper, A., Wendorff, J. H., Greiner, A., Adv. Mater. 12, 637 (2000).Google Scholar
7. Kim, J.-S., Reneker, D. H., Polymer Composite 20, 124 (1999).Google Scholar
8. Jaeger, R., Schonherr, H., Vancso, G. J., Macromolecules 29, 7634 (1996).Google Scholar
9. Dror, Y., Salalha, W., Khalfin, R. L., Cohen, Y., Yarin, A. L., Zussman, E., Langmuir 19, 7012 (2003).Google Scholar
10. Gu, S.-Y., Wu, Q.-L., R, J., Vancso, G. J., Macromal. Rapid Commun. 26, 716 (2005).Google Scholar
11. Kim, J.-S., Lee, D.-S., Polymer J. 32, 616 (2000).Google Scholar
12. Deitzel, J. M., Kleinmeyer, J. D., Hirvonen, J. K., Tan, N. C. Beck, Polymer 42, 8163 (2001).Google Scholar
13. Ding, B., Kim, H.-Y., Lee, S-C., Shao, C.-L., Lee, D.-R., Park, S.-J., Kwang, G.-B., Choi, K.-J., J Polym Sci Part B: Polym Phys 40, 1261 (2002).Google Scholar
14. Zong, X., Ran, S., Fang, D., Hsiao, B. S., Chu, B., Polymer 44, 4959 (2003).Google Scholar
15. Inai, R., Kotaki, S., Ramakrishna, S., J Polym Sci Part B: Polym Phys 43, 3205 (2005).Google Scholar
16. Taepaiboon, P., Rungsardthong, U., Supaphol, P., Nanotechnology 17, 2317 (2006).Google Scholar
17. Park, J. G., Lee, S. H., Kim, B., Park, Y. W., Appl. Phys. Lett. 81, 4625 (2002).Google Scholar
18. Wang, M., Jin, H.-J., Kaplan, D. L., Rutledge, G. C., Macromolecules 37, 6856 (2004).Google Scholar
19. Tan, E. P. S., Lim, C. T., Appl. Phys. Lett. 87, 123106 (2005).Google Scholar
20. Carpick, R. W., Ogletree, D. F., Salmeron, M., Appl. Phys. Lett. 70, 1548 (1997).Google Scholar
21. Ge, S., Pu, Y., Zhang, W., Rafailovich, M., Sokolov, J., Phys. Rev. Lett. 85, 2340 (2000).Google Scholar
22. Cappella, B., Kaliappan, S. K., Sturm, H., Macromolecules 38, 1874 (2005).Google Scholar
23. Sader, J. E., Chon, J. W., Mulvaney, P., Rev. Sci. Instrum. 70, 3967 (1999).Google Scholar
24. Bhushan, B., Li, X., Int. Mater. Rev. 48, 125 (2003).Google Scholar
25. Johnson, K. L., Kendall, K., Roberts, A. D., Proc. R. Soc. Lond. A. 324, 301 (1971).Google Scholar
26.From J.K.R. theory in ref.23., it has Fa=3/2*ϖrWa, where Faand Wa are the adhesion force and the work done of adhesion when a Si AFM tip was pulled out from Si wafer, and r is tip radius. Fa can be obtained from F-D curves due to the elastic linear response, and Wa= 2(γ1γ2)1/21 and γ2 are the dispersive surface energy of Si tip and sample (0.042 J/m2 for Si), thus, r = Fa/(3ϖγ), and the value of r can be further calculated.Google Scholar
27. Ciselli, P., “The potential of carbon nanotubes in polymer composites.” PhD Thesis: Eindhoven University of Technology (2007).Google Scholar
28. Stephens, J. S., Chase, D. B., Rabolt, J. F., Macromolecules 37, 877 (2004).Google Scholar
29. Johnson, K. L., “Contact Mechanics.” (Cambridge Uni. Press, Cambridge, 1992), pp. 84106.Google Scholar
30. Bhattacharyya, S., Sinturel, C., Salvetat, J. P., Saboungi, M.-L., Appl. Phys. Lett. 86, 113104 (2005).Google Scholar
31. Lucas, M., Mai, W., Yang, R., Wang, Z. L., Riedo, E., Nano Lett. 7, 1314 (2007).Google Scholar
32. Zhang, X., Liu, T., Sreekumar, T. V., Kumar, S., Moore, V. C., Hauge, R. H., Smalley, R. E., Nano. Lett. 3, 1285 (2003).Google Scholar
33. Wang, W., Barber, A. H., unpublished (2007).Google Scholar
34. Yuan, J., Li, B., Ge, S., Sokolov, J. C., Rafailovich, M. H., Langmuir 22, 1321 (2006).Google Scholar