Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T01:04:31.122Z Has data issue: false hasContentIssue false

Mechanism of Efficient Field Emission from Carbon Nanotubes

Published online by Cambridge University Press:  10 February 2011

W. Zhu
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974
C. Bower
Affiliation:
University of North Carolina, Chapel Hill, NC 27599
O. Zhou
Affiliation:
University of North Carolina, Chapel Hill, NC 27599
G. P. Kochanski
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974
S. Jin
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974
Get access

Abstract

We report observation of electron emission from individual carbon nanotubes. Two classes of emitters are observed, one emitting electrons with momentum nearly parallel to the nanotube axis, the other emitting electrons with nonzero momentum perpendicular to the tube axis. The emission pattern reflects the electronic structure of a particular tube and allows us to distinguish between structurally different nanotubes. These nanotube emitters exhibit excellent macroscopic emission properties; they can operate at a very large current density, as high as 4 A/cm2. At electric fields as low as 4-7 V/μm, they emit technologically useful current densities, e.g. 10 mA/cm2. The emission characteristics and durability of the carbon nanotube cold cathodes offer promising applications for vacuum microelectronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., Helical microtubules of graphitic carbon, Nature vol. 354, 5658, 1991.Google Scholar
2. Ebbesen, T. W. and Ajayan, P. M., Large scale synthesis of carbon nanotubes, Nature, 358, 220 (1992)Google Scholar
3. Iijima, S., Carbon nanotubes, MRS Bulletin, p. 43, November 1994 Google Scholar
4. Yakobson, B. I. and Smalley, R. E., Fullerene Nanotubes: C1,000,000 and Beyond, American Scientists, vol. 85, 324 (1997).Google Scholar
5. Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tomanek, D., Nordlander, P., Colbert, D. T. and Smalley, R. E., Unraveling Nanotubes: field emission from an atomic wire, Science, 269, 1550 (1995).Google Scholar
6. Heer, W. A. de, Chatelain, A. and Ugarte, D., A carbon nanotube field emission electron source, Science, 270, 1179 (1995).Google Scholar
7. Wang, Q. H., Corrigan, T. D., Dai, J. Y., Chang, R. P. H. and Krauss, A. R., Field emission from nanotube bundle emitters at low fields, Appl. Phys. Lett., 70 (1997) 3308.Google Scholar
8. Saito, Y., Hamaguchi, K., Nishino, T., Hata, K., Tohji, K., Kasuya, A. and Nishina, N., Field emission patterns from single walled carbon nanotubes, Jpn, J. Appl. Phys. 36 (1997) L1340.Google Scholar
9. Saito, Y., Uemura, S. and Hamaguchi, K., Cathode ray tube lighting elements with carbon nanotubes field emitters, Jpn. J. Appl. Phys. 37, L346 (1998).Google Scholar
10. Wang, Q. H., Setlur, A. A., Lauerhaas, J. M., Dai, J. Y., Seelig, E. W. and Chang, R. P. H., A nanotube based field emission flat panel display, Appl. Phys. Lett., 72, 2912 (1998).Google Scholar
11. Bonard, J. M., Salvetat, J. P., Stockli, T., Heer, W. A. de, Forro, L. and Chatelain, A., Field emission from single wall carbon nanotube films, Appi. Phys. Lett., 73, 918 (1998).Google Scholar
12. Collins, P. G. and Zettl, A., A simple and robust electron beam source from carbon nanotubes, Appl. Phys. Lett., 69, 1969 (1996).Google Scholar
13. Dresselhaus, M.S. et al. Science of Fullerenes and Carbon Nanotubes (Academic Press, 1996, pp.756ff, ISBN 0-12-221820-5).Google Scholar
14. Ebbesen, T. W., ed., Carbon Nanotubes (CRC Press, 1997, pp. 191210, ISBN 0-8493-9602-6).Google Scholar
15. Hermann, G. and Wagener, S., The Oxide Coated Cathode (Chapman and Hall, London, 1951).Google Scholar
16. Brodie, I. and Spindt, C. A., Adv. Electron. Electron Phys. edited by Hawkes, P. W., Academic Press, 83, 1 (1992).Google Scholar
17. Bajic, S. and Latham, R. V., J. Phys. D, 21, 200 (1988).Google Scholar
18. Okano, K. et al. Appl. Phys. Left. 70, 2201 (1997).Google Scholar
19. Zhu, W., Kochanski, G. P., Jin, S., Science 282, 1471 (1998).Google Scholar
20. Bower, C., Suzuki, S., Tanigaki, K. and Zhou, O., Synthesis and structure of pristine and alkali-metal intercalated single-walled carbon nanotubes, Appl. Phys. A67, 47 (1998).Google Scholar
21. Zhu, W., Kochanski, G. P., Jin, S. and Seibles, L., Defects enhanced electron field emission from chemical vapor deposited diamond, J. Appl. Phys., 78, 2707 (1995).Google Scholar
22. Zhu, W., Kochanski, G. P. and Jin, S., Electron field emission from chemical vapor deposited diamond, J. Vac. Sci. Technol., B14, 2011 (1996).Google Scholar
23. Fowler, R. H. and Nordheim, L. W., Electron emission in intense electric fields, Proc. R. Soc. London Ser. A119, 173 (1928).Google Scholar
24. He, J., Cutler, P. H., Miskovsky, N. M., Feuchtwang, T. E., Sullivan, T. E. and Chung, M., Surf. Sci., 246, 348 (1991).Google Scholar
25. Cutler, P. H., He, J., Miller, J., Miskovsky, N. M., Weiss, B. and Sullivan, T. E., Prog. Surf. Sci., 42, 169 (1993).Google Scholar
26. Barbour, J. P., Dolan, W. W., Trolan, J. K., Martin, E. E. and Dyke, W. P., Space charge effects in field emission, Phys. Rev., 92, 45 (1953).Google Scholar
27. Bell, A. E. and Swanson, L. W., Total Energy Distributions of Field Emitted Electrons at High Current Density, Phys. Rev., B19, 3353 (1979).Google Scholar
28. Monthioux, M. et al. , Presented at MRS Fall Meeting, Nov 30 - Dec. 4, 1998, paper No. S 4.7.Google Scholar
29. Good, R. H. Jr., and Mueller, E. W., Field emission, in Handbuch der Physik, edited by Fluace, S., Springer-Verlag, Berlin, vol. 21, pp 176231 (1956).Google Scholar