Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T11:17:10.520Z Has data issue: false hasContentIssue false

Mechanism of hole inlet closure in shape transformation of hole arrays on Si(001) substrates by hydrogen annealing

Published online by Cambridge University Press:  20 January 2011

Reiko Hiruta
Affiliation:
Fuji Electric Holdings Co., Ltd., 4-18-1, Tsukama, Matsumoto, Nagano 390–0821, Japan
Hitoshi Kuribayashi
Affiliation:
Fuji Electric Systems Co., Ltd., 4-18-1, Tsukama, Matsumoto, Nagano 390–0821, Japan
Koichi Sudoh
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
Ryosuke Shimizu
Affiliation:
Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo 102–0075, Japan
Get access

Abstract

We investigated the process of the hole inlet closure in surface-diffusion-driven transformation of arrays of high-aspect-ratio holes on Si(001) substrates. The inlet gradually shrinks while keeping the circular shape because of lateral bulging of the inlet surface. We observed complicated top view morphologies reflecting the four-fold symmetry of the Si(001) surface on the inlet surface. Large {111} and {113} facets are formed in the four equivalent azimuths of the [110], while corrugated patterns arise in the four equivalent azimuths of the [100]. Atomic force microscopy observations reveal that the corrugated pattern is composed of three types of small facets, namely, {110} and two {113} in relation of the mirror symmetry. The corrugated pattern formation is due to the geometrical restriction that there is no stable facet between (001) and (010) in the [010] azimuth. The observed morphological evolution is interpreted as surface-diffusion-driven transformation under constraint of the anisotropic surface energy of Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fujishima, N. and Salama, T. A.: IEDM Tech. Dig. (1997) 359.Google Scholar
2. Choi, Y. K., Chang, L., Rande, P., Lee, J. S., Ha, D., Balasubramanian, S., Agarwal, A., Ameen, M., King, T. J. and Borkor, J.: IEDM Tech. Dig. (2002) 259.Google Scholar
3. Lee, M.C. and Wu, M.C.: Proc. 18th IEEE Int. Conf. on Micro Electro Mechanical Systems(2005) 596.Google Scholar
4. Mizushima, I., Sato, T., Taniguchi, S., and Tsunashima, Y., Appl. Phys. Lett. 77, 3290 (2000).CrossRefGoogle Scholar
5. Sato, T., Mizushima, I., Taniguchi, S., Takenaka, K., Shimonishi, S., Hayashi, H., Hatano, M., Sugihara, K. and Tsunashima, Y., Jpn. J. Appl. Phys. 43, 12 (2004).CrossRefGoogle Scholar
6. Kuribayashi, H., Shimizu, R., Sudoh, K., and Iwasaki, H., J. Vac. Sci.. & Technol. A22, 1406 (2004).CrossRefGoogle Scholar
7. Kuribayashi, H., Hiruta, R., Shimizu, R., Sudoh, K. and Iwasaki, H.: J. Vac. Sci. Technol. A 21 (2003) 1279.CrossRefGoogle Scholar
8. Lee, M. M. and Wu, M. C., J. Microelectromech. Syst. 15, 338 (2006).CrossRefGoogle Scholar
9. Depauw, V., Richard, O., Bender, H., Gordon, I., Beaucarne, G., Poortmans, J., Mertens, R., and Celis, J.-P., Thin Solid Films 516, 6934 (2008).CrossRefGoogle Scholar
10. Shimizu, R., Kuribayashi, H., Hiruta, R., Sudoh, K. and Iwasaki, H., Proc. 2006 Int. Symp. Power Semicon. Dev. & ICs, p.113 (2006).Google Scholar
11. Hiruta, R., Kuribayashi, H., Shimizu, R., Sudoh, K. and Iwasaki, H.: M.R.S. Symp. Proc. 958 (2007).Google Scholar
12. Sudoh, K., Iwasaki, H., Hiruta, R., Kuribayashi, H., and Shimizu, R., J. Appl. Phys. 105, 083536 (2009).CrossRefGoogle Scholar