Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T04:56:54.399Z Has data issue: false hasContentIssue false

Metal Organic Chemical Vapor Deposition of Co-, Mn-, Co-Zr and Mn-Zr Oxide Thin Films

Published online by Cambridge University Press:  10 February 2011

D. Barreca
Affiliation:
DCIMA and CSSRCC-CNR, University of Padova, Via Marzolo 1, 35131 Padova, Italy
F. Benetollo
Affiliation:
ICTIMA-CNR, Corso Stati Uniti 4, Padova 35127Italy
M. Bozza
Affiliation:
ICTIMA-CNR, Corso Stati Uniti 4, Padova 35127Italy
S. Bozza
Affiliation:
ICTIMA-CNR, Corso Stati Uniti 4, Padova 35127Italy
G. Carta
Affiliation:
ICTIMA-CNR, Corso Stati Uniti 4, Padova 35127Italy
G. Cavinato
Affiliation:
DCIMA and CSSRCC-CNR, University of Padova, Via Marzolo 1, 35131 Padova, Italy
G. Rossetto
Affiliation:
ICTIMA-CNR, Corso Stati Uniti 4, Padova 35127Italy
P. Zanella
Affiliation:
ICTIMA-CNR, Corso Stati Uniti 4, Padova 35127Italy
Get access

Abstract

Deposition of thin films of Co- and Mn- oxides as well as of their mixtures with ZrO2 have been carried out by MOCVD using Co(C5H5)2, Mn(C5F6HO2)2(THF)2and (C5Hs)2Zr(CH3)2as precursors. XRD and XPS analyses of the obtained deposits are reported. Introduction of water vapor into the reactor chamber during the flow of the precursors improved their decomposition efficiency and the quality of the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Isai, M., Yamaguchi, K., Iyoda, H., Fujiyasu, H., Ito, Y., J. Mater. Res. 14, 1653 (1999).Google Scholar
2 a. Zeng, H.C., Lin, J., Teo, W.K., Wu, J.C. and Tan, K.L., J. Mater. Res. 10, 545 (1995). b. J. Ma, G.K. Chuah, S. Jaenicke, R. Gopalakrishnan and K.L. Tan, Berichte der Bunsen Gesells chaft- Physical Chemical Chemistry 100, 585 (1996).Google Scholar
3 Codato, S., Carta, G., Rossetto, G., Rizzi, G.A.. Zanella, P., Scardi, P. and Leoni, M., Chem. Vap. Deposition 5, 159 (1999).Google Scholar
4 Dormans, G.J.M., J. of Crystal Growth 108, 806 (1991).Google Scholar
5 Dormans, G.J.M., Meekes, G.J.B.M. and Staring, E.G.J., J. of Crystal Growth 114, 364 (1991).Google Scholar
6 Our manuscript in preparation.Google Scholar
7 a. Haber, J. and Ungier, L., J. Electron Spectrosc. Relat. Phenom. 12, 305 (1977). b. C.A. Strydom and H.J. Strydom, Inorg. Chim. Acta 159, 191(1989). c. N.S. McIntyre, D.D. Johnston, L.L. Coatsworth, R.D. Davidson and J.R. Brown, Surf. Interf. Anal. 15, 265 (1990).Google Scholar
8 Frost, D.C., McDowell, C.A. and Woolsey, I.S., Mol. Phys. 27, 1473 (1974).Google Scholar
9 Jiménez, V.S., Espinós, J.P. and Gonzàlez-Elipe, A.R., Surf. Interf. Anal. 26, 62 (1998).Google Scholar
10 Schenck, C.V., Dillard, J.G. and Murray, J.W., J. Colloid Interf. Sci. 95, 398 (1983).Google Scholar
11 Moulder, J.F., Stickle, W.F., Sobol, P.E. and Bomben, K.D., Hanbook of X-Ray Photoelectron Spectroscopy. J. Chastain, Perkin Elmer Corporation, Eden Prairie, MN, USA.Google Scholar
12 Cochran, S.J. and Larkins, F.P., J. Chem. Soc. Faraday Trans. 1 82, 1721 (1986).Google Scholar
13 Castro, V. Di and Polzonetti, G., J. Electron Spectrosc. Relat. Phenom. 48, 117 (1989).Google Scholar
14 Wu, P., Kershaw, R., Dwight, K. and Wold, A., Mat. Res. Bull. 23, 475 (1988).Google Scholar
15 McIntyre, N.S., Johnston, D.D., Coatsworth, L.L., Davidson, R.D. and Brown, J.R., Surf. Interf. Anal. 15, 265 (1990).Google Scholar
16 Zeng, H.C., Lin, J., Teo, W.K., Wu, J.C. and Tan, K.L., J. Mater. Res. 10, 545 (1995).Google Scholar