Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T07:06:30.352Z Has data issue: false hasContentIssue false

MFMOS Capacitor with Pb5Ge3O11 Thin Film for One Transistor Ferroelectric Memory Applications

Published online by Cambridge University Press:  10 February 2011

T. K. Li
Affiliation:
Sharp Laboratories of America, Inc, 5700 NW Pacific Rim Blvd. Camas, WA 98607
S. T. Hsu
Affiliation:
Sharp Laboratories of America, Inc, 5700 NW Pacific Rim Blvd. Camas, WA 98607
J. J. Lee
Affiliation:
Sharp Laboratories of America, Inc, 5700 NW Pacific Rim Blvd. Camas, WA 98607
Y. F. Gao
Affiliation:
Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352
M. Engelhard
Affiliation:
Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352
Get access

Abstract

A ferroelectric Pb5Ge3O11 thin film with a low dielectric constant is proposed for application in one transistor ferroelectric memories. A strong depolarization voltage on the ferroelectric capacitor with MIFSFET structures diminishes the remanent polarization significantly and, therefore, the low dielectric constant becomes very important to widen the memory window. A memory window of 3V was estimated for the MFMOS memory structure with 2000Å ferroelectric Pb5Ge3O11 and a 100Å gate oxide. In the second part of this paper, Pb5Ge3O11 films deposited on Ir/Ti/SiO2/Si substrates, by using MOCVD system, was demonstrated. Germanium ethoxide, Ge(OC2H5)4, and lead bis-tetramethylheptadione, Pb(thd)2, were used as the MOCVD precursors. The film composition, phase formation, microstructure and ferroelectric properties are reported. The c-axis oriented Pb5Ge3O11 thin films prepared by MOCVD and RTP post-annealing showed a square ferroelectric hysteresis loop with Pr of 2.83 μC/cm2 and EC of 49 kV/cm. A low leakage current of 7.5 × 10−7 A/cm2 at 100 kV/cm and low dielectric constant of 41 were also demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iwasaki, H., Sugii, K., Yamada, T., and Niizeki, N., Appl. Phys. Lett. 18, 444 (1971).Google Scholar
2. Ramtron Corporation (Colorado Springs, CO) started introducing its 4Kbit, 8Kbit, and 16Kbit FRAMs in 1988.Google Scholar
3. Araujo, C. A. Paz De, Cuchiaro, J. D., McMillan, L. D., Scott, M. C. & Scott, J. F., Nature, 374, 13, 627629 (1995).Google Scholar
4. Desu, S. B. and Li, T. K., Mat. Sci. and Eng. B 34, L4–L8 (1995).Google Scholar
5. Li, T. K., Zhu, Y. F., Desu, S. B., Peng, C. H., Mat. Res. Soc. Symp.Proc. vol.415, 189 (1996).Google Scholar
6. Chang, J. F. and Desu, S. B., J. Mater. Res. 9, 955 (1994).Google Scholar
7. Li, T. K., Zhu, Y. F., Desu, S. B., Peng, C. H., and Masaya, N., Appl. Phys. Letters 68 (5), 616 (1997).Google Scholar
8. Glass, A. M, Nassau, K., and Shiever, J. W., J. Appl. Phys. 48, 5213 (1978).Google Scholar
9. Mansingh, A. and Krupanidhi, S. B., J. Appl. Phys. 51, 5408 (1980).Google Scholar
10. Schmitt, H., Mueser, H. E., and Karthein, R., Ferroelectrics 56, 141 (1984).Google Scholar
11. Li, Tingkai, Zhang, Fengyan and Hsu, Sheng Teng, Appl. Phys. Lett. 74 (2) 296 (1999).Google Scholar