Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T06:26:16.009Z Has data issue: false hasContentIssue false

Micropillar Arrays for High Sensitivity Sensors

Published online by Cambridge University Press:  19 August 2014

Youngwoo Kim
Affiliation:
Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109, U.S.A. Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI 48109, U.S.A.
Nakhiah Goulbourne
Affiliation:
Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI 48109, U.S.A.
Get access

Abstract

In this paper, we report on a new micropillar sensor array that is stretchable, flexible, and has high sensitivity in the tactile sensing regime (<10 kPa). The sensor array is capable of detecting deformation modes other than pressure such as shear and planar extension. The capacitance-type sensor is fabricated using soft nanolithography whereby the micropillars are individually electroded using a sputtering technique. Buckled gold electrodes are used in this study to enable large sensor stretches up to 55%. Three micropillar aspect ratios were considered in this work (1:1, 1:2, 1:3). Here we present the highest reported sensitivity [0.8 kPa-1] of a capacitance type flexible/stretchable sensor. Our results show that this sensor is also able to detect very low pressures down to 5.4 Pa, which is in the range of ultra-low detection pressures recently reported. Finally, the microstructured sensor array naturally lends itself to the development of pixel-type pressure sensors. We present preliminary results for a 25 pixel array.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Liu, X., Zhu, Y., Nomani, M. W., Wen, X., Hsia, T.-Y., Koley, G., Journal of Micromechanics and Microengineering 23, no. 2 (2013).Google Scholar
Mannsfeld, S. C. B., Tee, B. C.-K., Stoltenberg, R. M., Chen, C. V. H.-H., Barman, S., Muir, B. V. O., Sokolov, A. N., Reese, C. and Bao, Z.. Nature Materials 9, no. 10 (2010).CrossRefGoogle Scholar
Lipomi, D. J., Vosgueritchian, M., Tee, B. C.-K., Hellstrom, S. L., Lee, J. A., Fox, C. H. and Bao, Z.. Nature Nanotechnology 6, no. 12 (2011).CrossRefGoogle Scholar
Chen, P.-J., Rodger, D.C., Saati, S., Humayun, M.S. and Tai, Y.-C.. Journal of Microelectromechanical Systems 17, no. 6 (2008).Google Scholar
Zarzar, L. D. and Aizenberg, J., Accounts of Chemical Research, (2013).Google Scholar
Pang, C., Lee, G.-Y., Kim, T.-I., Kim, S. M., Kim, H. N., Ahn, S.-H. and Suh, K.-Y., Nature Materials 11, no. 9 (2012).CrossRefGoogle Scholar
Hammock, M. L., Chortos, A., Tee, B. C.-K., Tok, J. B.-H. and Bao, Z., Advanced Materials 25, no. 42 (2013).CrossRefGoogle Scholar
Fan, F. -R., Lin, L., Zhu, G., Wu, W., Zhang, R. and Wang, Z. L., Nano Letters 12, no. 6 (2012).Google Scholar
Fan, J. A., Yeo, W.-H., Su, Y., Hattori, Y., Lee, W., Jung, S.-Y., Zhang, Y., Liu, Z., Cheng, H., Falgout, L., Bajema, M., Coleman, T., Gregoire, D., Larsen, R. J., Huang, Y. and Rogers, J. A.. Nature Communications 5 (2014).Google Scholar
Liu, C., Bioinspiration & Biomimetics 2, no. 4 (2007).CrossRefGoogle Scholar
Holgerson, P., Sutherland, D. S., Kasemo, B. and Chakarov, D., Applied Physics A 81, no. 1 (2005).CrossRefGoogle Scholar
Qin, D., Xia, Y. and Whitesides, G. M., Nature Protocols 5, no. 3 (2010).CrossRefGoogle Scholar
Pashley, D. W., Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 255, no. 1281 (1960).Google Scholar
Lacour, S. P., Jones, J., Wagner, S., Li, T. and Suo, Z., Proceedings of the IEEE 93, no. 8 (2005).CrossRefGoogle Scholar