Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T06:44:14.975Z Has data issue: false hasContentIssue false

Microstructural Observation of Focused Ion Beam Modification of Ni Silicide/Si Thin Films

Published online by Cambridge University Press:  15 February 2011

Miyoko Tanaka
Affiliation:
National Research Institute for Metals, 1–2-1 Sengen, Tsukuba, Ibaraki 305, JAPAN+81-298-53-1180, 81-298-53-1199
Kazuo Furuya
Affiliation:
National Research Institute for Metals, 1–2-1 Sengen, Tsukuba, Ibaraki 305, JAPAN+81-298-53-1180, 81-298-53-1199
Tetsuya Saito
Affiliation:
National Research Institute for Metals, 1–2-1 Sengen, Tsukuba, Ibaraki 305, JAPAN+81-298-53-1180, 81-298-53-1199
Get access

Abstract

Focused ion beam (FIB) irradiation of a thin Ni2Si layer deposited on a Si substrate was carried out and studied using an in-situ transmission electron microscope (in-situ TEM). Square areas on sides of 4 by 4 and 9 by 9 μm were patterned at room temperature with a 25keV Ga+-FIB attached to the TEM. The structural changes of the films indicate a uniform milling; sputtering of the Ni2Si layer and the damage introducing to the Si substrate. Annealing at 673 K results in the change of the Ni2Si layer into an epitaxial NiSi2 layer outside the FIB irradiated area, but several precipitates appear around the treated area. Precipitates was analyzed by energy dispersive X-ray spectroscopy (EDS). Larger amount of Ni than the surrounding matrix was found in precipitates. Selected area diffraction (SAD) patterns of the precipitates and the corresponding dark field images imply the formation of a Ni rich silicide. The relation between the FIB tail and the precipitation is indicated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nagamachi, S., Yamakage, Y., Ueda, M., Maruno, H., Shinada, K., Fujiyama, Y., Asari, M. and Ishikawa, J., Appl. Phys. Lett. 65, 3278 (1994)Google Scholar
2. Gnaser, H., Kallmayer, C. and Oechner, H., J. Vac. Sci. Technol. B13, 19 (1995)Google Scholar
3. Kubena, R. L. and Ward, J. W., Appl. Phys. Lett. 51, 1960 (1987)Google Scholar
4. Templeton, I. M. and Champion, H. G., J. Vac. Sci. Technol. B13, 2603 (1995)Google Scholar
5. Furuya, K., Saito, T., Yamada, I. and Hata, T., J. Electron Microsc. 45, 291 (1996)Google Scholar
6. Furuya, K. and Saito, T., J. Appl. Phys. 80,1922(1996)Google Scholar
7. Tanaka, M., Furuya, K. and Saito, T., Appl. Phys. Lett. 68, 961 (1996)Google Scholar
8. Gibson, J. M. and Batstone, J. L., Surf. Sci. 208, 317 (1989)Google Scholar
9. Assayag, G. Ben, Vieu, C., Gierak, J., Sudraud, P. and Corbin, A., J. Vac. Sci. Technol. B1, 2420 (1995)Google Scholar
10. Tanaka, M., Furuya, K. and Saito, T., Nuc. Inst. and Met. to be submitted.Google Scholar
11. Potter, D. I., Rehn, L. E., Okamoto, P. R. and Wiedersich, H., Scripta Met. 11, 1095 (1977)Google Scholar
12. Okamoto, P. R. and Rehn, L. E., J. Nucl. Mater. 83, 2 (1979)Google Scholar
13. Binary Alloy Phase Diagrams, edited by Massalski, T. B., (American Society for Metals, 1986)Google Scholar
14. Saini, G. S., Calvert, L. D. and Taylor, J. B., Can. J. Chem., 42, 1511 (1964)Google Scholar
15. Frank, Von K. and Schubert, K., Acta Cryst. B27, 916 (1971)Google Scholar
16. Tu, K. N., Ottaviani, G., Gösele, U. and Föll, H., J. Appl. Phys. 54, 758 (1983)Google Scholar
17. Chu, W. K., Kräutle, H., Mayer, J. W., Müller, H., Nicolet, M- A. and Tu, K. N., Appl. Phys. Lett. 25, 454 (1975)Google Scholar
18. Tu, K. N., Chu, W. K. and Mayer, J. W., Thin. Solid Films 25, 403(1975)Google Scholar
19. Tanaka, M., Furuya, K. and Saito, T., in preparation.Google Scholar