Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T01:17:49.408Z Has data issue: false hasContentIssue false

Microstructure – Mechanical Properties Relationship of Laser Interference Irradiated Ni/Al Multi-Film

Published online by Cambridge University Press:  01 February 2011

C. Daniel
Affiliation:
Department for Materials Science, Functional Materials, Saarland University, P.O. Box 15 11 50, D – 66041 Saarbruecken, Germany
A. Lasagni
Affiliation:
Department for Materials Science, Functional Materials, Saarland University, P.O. Box 15 11 50, D – 66041 Saarbruecken, Germany
F. Mücklich
Affiliation:
Department for Materials Science, Functional Materials, Saarland University, P.O. Box 15 11 50, D – 66041 Saarbruecken, Germany
Get access

Abstract

Due to the corresponding intermetallic compounds, Ni/Al multi-layered thin film systems are important to protect against the mechanical and chemical impacts on the bulk component. The mechanical properties of these intermetallic compounds, NiAl, can be further improved by combining with other stiff phases. The mechanical properties would be optimized if the lateral surface composite can be made in such a way that the different phases are arranged periodically with a preferred orientation, micro-scaled period and reticulated phase interfaces. Such optimized surface composites have been achieved by laser interference irradiation in a nano-grained structure.

In this study, the thin film systems are produced by physical vapor deposition and subsequently irradiated by the interference pattern of two or more coherent laser beams. The corresponding periodical heat treatment has been analyzed by thermal simulation, and thermal simulation results are compared with the experimental results. Further, the phase transitions during laser interference irradiation are calculated. The structural investigations of irradiated films - grain sizes and deformation by TEM, stress and texture by XRD - are compared with the mechanical properties - hardness and Young's modulus by NI-AFM.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Volinsky, A. A., Hauschildt, M., Vella, J. B., Edwards, N. V., Gregory, R., Gerberich, W. W., Mat. Res. Soc. Symp. Proc. 695, L1.11 (2002).Google Scholar
2. Daniel, C., Liu, Z., Mücklich, F., Appl. Surf. Sci. 208–209, 317 (2003).Google Scholar
3. Kelly, M.K., Dahlheimer, B., Phys. Status Solidi A 156, K13 (1996).Google Scholar
4. von Allmen, M., Blatter, A., Laser- Beam Interactions with Materials, second ed., Springer, Berlin, Germany, 1995.Google Scholar
5. Bäuerle, D., Laser Processing and Chemistry, second ed., Springer, Berlin, Germany, 1996.Google Scholar
6. Kelly, M.K., Rogg, J., Nebel, C.E., Stutzmann, M., ќatai, Sz., Phys. Status Solidi A 166, 651 (1998).Google Scholar
7. Rothhaar, U., Oechsner, H., Scheib, M., Müller, R., Phys. Rev. B 61, 974 (2000).Google Scholar
8. Daniel, C., Lasagni, A., Mücklich, F., Surf. Coat. Technol. (in print).Google Scholar
9. Lasagni, A., Mücklich, F., Appl. Surf. Sci. (submitted).Google Scholar
10. Modest, M. F., in: Ready, J. F., Farson, D. F. (Ed), Handbook of Laser Materials Processing, Magnolia Publishing, Inc., Orlando, USA, 2001, pp. 175182.Google Scholar
11. E Zavecz, T., Saifi, M. A., Appl. Phys. Lett., 26(4), 165 (1975).Google Scholar
12. Incropera, F., Dewitt, D., Fundamentals of Heat and Mass Transfer, 5th Edition, John Wiley & Sons, New York, USA, 2002.Google Scholar
13. Lasagni, A., Soldera, F., Mücklich, F., Kaiser, T., Hrastnik, K., (to be published).Google Scholar
14. Linde, D. R. (Ed), CRC Handbook of Chemistry and Physics, 74th Edition, CRC Press, Boca Raton, 1993.Google Scholar
15. Wawra, H., Z. Metallkde 69, 518 (1978).Google Scholar
16. Liu, K. W., Mücklich, F., Mat. Res. Soc. Symp. Proc. Vol. 753, BB6.5.1 (2003).Google Scholar
17. Oliver, W. C., Pharr, G. M., J. Mater. Res. 7(6), 1564 (1992).Google Scholar
18. Zang, H. Y., Hu, Z. Q., Lu, K., J. Appl. Phys. 77 (6), 2811 (1995).Google Scholar
19. Lu, K., Zhang, H. Y., J. Mater. Res. 12 (4), 923 (1997).Google Scholar
20. Tamirisakandala, S., Yellapregada, P. V. R. K., Medeiros, S. C., Frazier, W. G., Malas, J. C., Dutta, B., Adv. Eng. Mater. 5 (9), 667 (2003).Google Scholar
21. Kraft, O., Volkert, C. A., Adv. Eng. Mater. 3(3), 99 (2001).Google Scholar
22. Mendik, M., Sathish, S., Kulik, A., Gremaud, G., Wachter, P., J. Appl. Phys. 71(6), 2830 (1992).Google Scholar
23. Mücklich, F., Daniel, C., Lasagni, A., Yu, F., Mat. Res. Soc. Symp. Proc. xx (2003) Fall Meeting Symp. MGoogle Scholar