Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T16:19:04.106Z Has data issue: false hasContentIssue false

Mid-10 cm−2 threading dislocation density in optimized high-Ge content relaxed graded SiGe on Si for III-V solar on Si

Published online by Cambridge University Press:  01 February 2011

David M. Isaacson
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts 02139
Carl L. Dohrman
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts 02139
Arthur J. Pitera
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts 02139
Saurabh Gupta
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts 02139
Eugene A. Fitzgerald
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts 02139
Get access

Abstract

We present a framework for obtaining high quality relaxed graded SiGe buffers on Si for III-V integration. By avoiding dislocation nucleation in Si1−xGex layers of x>0.96, we have achieved a relaxed Si0.04Ge0.96 platform on Si(001) offcut 2° that has a threading dislocation density of 7.4×105 cm−2. This 2° offcut orientation was determined to be the minimum necessary for APB-free growth of GaAs. Furthermore, we found that we could compositionally grade the Ge content in the high-Ge portion of the buffer at up to 17 %Ge μm−1 with no penalty to the dislocation density. The reduction in both threading dislocation density and buffer thickness exhibited by our method is an especially significant development for relatively thick minority-carrier devices which use III-V materials such as multi-junction solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fitzgerald, E. A., Xie, Y.-H., Green, M. L., Brasen, D., Kortan, A. R., Michel, J., Mii, Y.-J., and Weir, B. E., Appl. Phys. Lett. 59, 811 (1991).Google Scholar
2. Groenert, M. E., Pitera, A. J., Ram, R. J., and Fitzgerald, E. A., Journal of Vacuum Science and Technology B 21, 1064 (2003).Google Scholar
3. Groenert, Michael E., Leitz, Christopher W., Pitera, Arthur J., and Yang, Vicky, Journal of Applied Physics 93 362 (2003).Google Scholar
4. Yang, V. K., Groenert, M. E., Taraschi, G., Leitz, C. W., Pitera, A. J., Currie, M. T., Cheng, Z., and Fitzgerald, E. A., Journal of Materials Science: Materials in Electronics 13, 377 (2002).Google Scholar
5. Ringel, S.M., Sieg, R.M., Carlin, J.A., Ting, S., Currie, M., Yang, V., Fitzgerald, E.A., Bulsara, M., and Keyes, B.M., Proceedings of the Second World Conference and Exhibition on Photovoltaic Solar Energy Conversion, July 1998.Google Scholar
6. Ringel, S.A., Carlin, J.A., Andre, C.L., Hudait, M.K., Gonzalez, M., Wilt, D.M., Clark, E.B., Jenkins, P., Scheiman, D., Allerman, A., Fitzgerald, E.A., and Leitz, C.W., Progress in Photovoltaics: Research and Applications 10, 417 (2002).Google Scholar
7. Currie, M. T., Samavedam, S. B., Langdo, T. A., Leitz, C. W., and Fitzgerald, E. A., Applied Physics Letters 72, 1718 (1998).Google Scholar
8. Yamaguchi, M. and Amano, C., J. Appl. Phys. 58 (9), 3601 (1985).Google Scholar
9. Fitzgerald, E. A., Kim, A. Y., Currie, M. T., Langdo, T. A., Taraschi, G., and Bulsara, M. T., Materials Science and Engineering B 67, 53 (1999).Google Scholar
10. Leitz, C.W., Currie, M.T., Kim, A.Y., Lai, J., Robbins, E., Fitzgerald, E.A. and Bulsara, M.T., Journal of Applied Physics 90, 2730 (2001).Google Scholar
11. Yonenaga, I., Journal of Materials Science: Materials in Electronics 10 329 (1999).Google Scholar
12. Fischer, R., Masselink, W. T., Klem, J., Henderson, T., McGlinn, T. C., Klein, M. V., and Morkoc, H., J. Appl. Phys. 58 (1), 374 (1985).Google Scholar
13. Fitzgerald, E. A., Xie, Y.-H., Monroe, D., Silverman, P. J., Kuo, J. M., Kortan, A. R., Thiel, F. A., and Weir, B. E., J. Vac. Sci. Technol. B 10, 1807 (1992).Google Scholar