Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T05:49:12.217Z Has data issue: false hasContentIssue false

Mn charge states in GaMnN as a function of Mn concentration and co-doping

Published online by Cambridge University Press:  01 February 2011

Enno Malguth
Affiliation:
malguth@physik.tu-berlin.de, Technische Universität Berlin, Institut für Festkörperphysik, Berlin, 10623, Germany
Axel Hoffmann
Affiliation:
hoffmann@physik.tu-berlin.de, Technische Universität Berlin, Institut für Festkörperphysik, Berlin, 10623, Germany
Wolfgang Gehlhoff
Affiliation:
gehlhoff@sol.physik.TU-Berlin.DE, Technische Universität Berlin, Institut für Festkörperphysik, Berlin, 10623, Germany
Matthew H. Kane
Affiliation:
mhkane@ou.edu, Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA, 30332-0245, United States
Ian T. Ferguson
Affiliation:
ian.ferguson@ece.gatech.edu, Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA, 30332-0245, United States
Get access

Abstract

In the context of the pursuit of a dilute magnetic semiconductor for spintronic applications, a set of GaMnN samples with varying Mn concentration and Si or Mg co-doping was investigated by optical and electron spin resonance spectroscopy. The results clearly demonstrate how the charge state of Mn is changed between 2+, 3+ and 4+ by Mg and Si co-doping. For p-type GaMnN we show that the introduction of the Mn3+/4+ donor can be compensated by Mg co-doping lowering the Fermi energy below the Mn3+/4+ level. While our results are in agreement with the hypothesis that the infrared photoluminescence appearing in GaMnN upon Mg doping originates from Mn4+, an unambiguous proof is still to be presented. Under this assumption, our measurements show that the Mn4+ center must be excited via an extra-center process at 2.54 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dietl, T., Ohno, H. and Matsukura, F., Phys. Rev. B 63, 195205 (2001).Google Scholar
2. Gerstmann, U., Blumenau, A. T. and Overhof, H., Physical Review B 63, 075204 (2001).10.1103/PhysRevB.63.075204Google Scholar
3. Han, B., Korotkov, R. Y., Wessels, B. W. et al. , Applied Physics Letters, 84 5320 (2004).10.1063/1.1766082Google Scholar
4. Graf, T., Gjukic, M., Brandt, M. S. et al. , Applied Physics Letters 81, 5159 (2002).Google Scholar
5. Marcet, S., Ferrand, D., Halley, D. et al. , Physical Review B 74, 125201 (2006).10.1103/PhysRevB.74.125201Google Scholar
6. Gelhausen, O., Malguth, E., Phillips, M. R. et al. , Applied Physics Letters 84, 4514 (2004).Google Scholar
7. Kane, M. H., Strassburg, M., Fenwick, W. E., Asghar, A., Senawiratne, J., Azamat, D., Hu, Z., Malguth, E. et al. , physica status solidi (c) 3, 2237 (2006).Google Scholar
8. Korotkov, R. Y., Gregie, J. M. et al. , Physica B: Condensed Matter 308–310, 18 (2001).Google Scholar
9. Zenneck, J., Niermann, T., Mai, D., Roever, M., Kocan, M., Malindretos, J., Seibt, M., Rizzi, A., Kaluza, N. and Hardtdegen, H., Journal of Applied Physics 101, 063504 (2007).10.1063/1.2710342Google Scholar
10. Han, B., Wessels, B. W. and Ulmer, M. P., Applied Physics Letters 86, 042505 (2005).10.1063/1.1853525Google Scholar
11. Malguth, E., Hoffmann, A., Gehlhoff, W. et al. , Physical Review B 74, 165202 (2006).Google Scholar
12. Malguth, E., Hoffmann, A., Phillips, M. and Gehlhoff, W., Mat. Res. Soc. Symposium Proceedings 892 (Eds, Kuball, M., Myers, T., Redwing, J. and Mukai, T.), 131 (2006).Google Scholar