Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T12:03:54.904Z Has data issue: false hasContentIssue false

Modelling of the (U1−y238Puy)O2+x Leaching Behaviour in Deionised Water under Anoxic Conditions

Published online by Cambridge University Press:  01 February 2011

J. Quiñones
Affiliation:
Ciemat. Nuclear Fission Department. Avda. Complutense 22. 28040 – Madrid., Spain
J. Cobos
Affiliation:
Ciemat. Nuclear Fission Department. Avda. Complutense 22. 28040 – Madrid., Spain
P. Diaz-Arocas
Affiliation:
Ciemat. Nuclear Fission Department. Avda. Complutense 22. 28040 – Madrid., Spain
V. V. Rondinella
Affiliation:
European Commission, JRC - ITU, Postfach 2340, 76125 Karlsruhe, Germany.
Get access

Abstract

The aim of this work is to provide credibility to the radiolytic models developed for performance assessment studies. Nowadays, there is a tendency to consider them useful tools for predicting the behaviour of spent fuel matrix under repository conditions, although they still suffer of limitations due, among others, to the following reasons: limited availability of kinetic data, difficulty to handle heterogeneous systems, lack of model validation.

A kinetics-based model to predict the dissolution of UO2 α-doped pellets under initial anoxic conditions is presented and compared with experimental results previously obtained. The uranium and plutonium concentrations in solution are predicted by considering the presence of an α-radiation field and its influence due to radiolysis of water on the pellet surface oxidation and subsequent dissolution.

The initial parameters required by the model in order to reproduce the pellet alteration process are: system geometry, chemical composition of the leachant, physico-chemical characteristics of the leachate and oxidation conditions of the pellet surface (expressed in terms of U(VI)/U(IV) ratio). The last one is the key parameter in the model for simulating the initial quick dissolution process. The results obtained are compared with experimental data. The agreement between the predictions obtained and the experimental published data is good.

The influence on the matrix oxidation – dissolution process due to the α-radiation field as well as the release of Pu are reproducible by the model. The Pu concentration trends as a function of time are explained in connection with the matrix dissolution process and are controlled by the formation of the secondary phase “Pu(OH)4(s)”.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rondinella, V.V., Matzke, Hj., Cobos, J., Wiss, T., Mat. Res. Soc. Symp. Proc. 556 (1999) 447.Google Scholar
2. Rondinella, V.V., Matzke, Hj., Cobos, J., Wiss, T., Radiochim. Acta, 88 (2000) 527531.Google Scholar
3. Cobos, J., Matzke, Hj., Rondinella, V.V., Martinez-Esparza, A., Wiss, T., Proc. GLOBAL '99 Int. Conf. on Future Nuclear Systems, Aug. 29- Sept. 3, 1999, Jackson Hole, USA, A.N.S. Google Scholar
4. Rondinella, V.V., Cobos, J., Matzke, Hj., Wiss, T., Carbol, P., Solatie, D., Mat. Res. Soc. Symp. Proc. 663 (2001) 392399.Google Scholar
5. Rondinella, V.V., Cobos, J., Wiss, T., Hiernaut, J.-P., submitted, ICEM '03, Oxford, UK, Sept 21–25, 2003, ASME, 2003.Google Scholar
6. Cobos, J., Havela, L., Rondinella, V.V., De Pablo, J., Gouder, T., Glatz, J.P., Carbol, P., Matzke, Hj., Radiochim. Acta, 90 (2002) 597602.Google Scholar
7. Cobos, J., Wiss, T., Gouder, T., Rondinella, V.V., Mat. Res. Soc. Symp. Proc., in press.Google Scholar
8. Torrero, M. E., Baraj, E., de Pablo, J., Giménez, J., and Casas, I., "Kinetics of Corrosion and Dissolution of Uranium Dioxide as a Function of pH," J. Chem. Kinet, vol. 29, pp. 261267, 1997.Google Scholar
9. Quiñones, J., Serrano, J. A., Díaz, P., Rodríguez, J. L., Bruno, J., Cera, E., Merino, J., Martínez Esparza, A., and Esteban, J. A., "Cálculo de la generación de productos radiolíticos en agua por radiación alfa. Determinación de la velocidad de alteración de la matriz del combustible gastado.," in Publicación tècnica ENRESA, vol. 2/2000: ENRESA, 2000.Google Scholar
10. Ross, A. B., Mallard, W. G., Helman, W. P., Buxton, G. V., Huie, R. E., and Neta, P., NDRL/NISTSolution Kinetics Database: Ver. 3.0. Gaithersburg, MD 20899: Notre Dame Radiation Laboratory, Notre Dame, IN and National Institute of Standars and Technology, 1998.Google Scholar
11. Carver, M. B., Hanley, D. V., and Chaplin, K. R., "Maksima Chemist. A program for mass action kinetics simulation by automatic chemical equation manipulation and integration by using Stiff techniques," AECL, Chalk River, Ontario AECL-6413, 1979.Google Scholar
12. Serrano, J. A., Quiñones, J., Cobos, J., Díaz, P., Rondinella, V. V., Glatz, J. P., Matzke, H., Martínez Esparza, A., and Esteban, J. A., "Leaching study of the behaviour of spent fuel and SIMFUEL under simulated granitic repository conditions," Radioactive Waste Management and Environmental Remediation - ASME, 2001.Google Scholar
13. Quiñones, J. and Serrano, J. A., "Estudio de la solubilidad del Pu en las condiciones del repositorio," in Participación del Ciemat en la 26 Reunión anual de la SNE, Ciemat, Ed. Madrid, . España, 2001, pp. 0513.Google Scholar