Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T07:29:34.462Z Has data issue: false hasContentIssue false

Modification of structure and optical property of ZnO nanowires by Ga ion beam

Published online by Cambridge University Press:  31 January 2011

Yao Cheng
Affiliation:
ifpossiblecheng@gmail.com, the Hong Kong University of Science and Technology, Physics Department, the William Mong Institution of Nano Science and Technology, Hong Kong, Hong Kong
Yao Liang
Affiliation:
yliang0625@hotmail.com, the Chinese University of Hong Kong, Physics Department, Hong Kong, Hong Kong
Ming Lei
Affiliation:
leimingiphy@yahoo.com.cn, the Hong Kong University of Science and Technology, Physics Department, the William Mong Institution of Nano Science and Technology, Hong Kong, Hong Kong
Siu Kong Hark
Affiliation:
skhark@sun1.phy.cuhk.edu.hk, the Chinese University of Hong Kong, Physics Department, Hong Kong, Hong Kong
Ning Wang
Affiliation:
phwang@ust.hk, the Hong Kong University of Science and Technology, Physics Department, the William Mong Institution of Nano Science and Technology, Hong Kong, Hong Kong
Get access

Abstract

Based on the focused ion beam (FIB) technology, we have prepared ZnO nanowires containing periodic nano-sized structures by an ultra thin Ga ion beam. ZnO nanowires can keep a good crystal quality after Ga ion bombardment. The cathodoluminescence (CL) spectroscopy study of the Ga-doped ZnO nanowires at low temperatures shows that the Ga doping effect can largely suppress the green emission that may mainly originate from the defects on the surfaces of ZnO nanowires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wang, Z. L., Kong, X. Y. and Zuo, J. M., Phys. Rev. Lett. 91, 185502 (2003).10.1103/PhysRevLett.91.185502Google Scholar
2 Wang, Z. L., Kong, X. Y., Ding, Y., Gao, P. X., Hughes, W. L., Yang, R. S. and Zhang, Y., Adv. Funct. Mater. 14, 943 (2004).10.1002/adfm.200400180Google Scholar
3 Kong, X. Y. and Wang, Z. L., Nano Lett. 3, 1625 (2003).10.1021/nl034463pGoogle Scholar
4 Kong, X. Y., Ding, Y., Yang, R. and Wang, Z. L., Science 303, 1348 (2004).10.1126/science.1092356Google Scholar
5 Park, J. H., Choi, H. J., Choi, Y. J., Sohn, S. H. and Park, J. G., J. Mater. Chem 14, 35 (2004).10.1039/b312821kGoogle Scholar
6 Meng, X. Q., Shen, D. Z., Zhang, J. Y., Zhao, D. X., Lu, Y. M., Dong, L., Zhang, Z. Z., Liu, Y. C. and Fan, X. W., Solid State Commun. 135, 179 (2005).10.1016/j.ssc.2005.04.015Google Scholar
7 Chen, Y. Q., Jiang, J., He, Z. Y., Su, Y., Cai, D. and Chen, L., Mater. Lett. 59, 3280 (2005).10.1016/j.matlet.2005.05.059Google Scholar
8 Wang, R. C., Liu, C. P., Huang, J. L. and Chen, S. J., Appl. Phys. Lett. 87, 053103 (2005).10.1063/1.2005386Google Scholar
9 Liu, X., Wu, X. H., Cao, H. and Chang, R. P. H., J. Appl. Phys. 95, 3141 (2004).10.1063/1.1646440Google Scholar
10 Heo, Y. W., Norton, D. P. and Pearton, S. J., J. Appl. Phys. 98, 073502 (2005).10.1063/1.2064308Google Scholar
11 Zhao, Q. X., Klason, P., Willander, M., Zhong, H. M., Lu, W. and Yang, J. H., Appl. Phys. Lett. 87, 211912 (2005).10.1063/1.2135880Google Scholar
12 Yang, Q., Tang, K., Zuo, J. and Qian, Y., Appl. Phys. A: Materials Science & Processing 79, 1847 (2004).10.1007/s00339-004-2939-9Google Scholar
13 Djurisic, A. B., Choy, W. C. H., Roy, V. A. L., Leung, Y. H., Kwong, C. Y., Cheah, K. W., Rao, T. K. G., Chan, W. K., Lui, H. T. and Surya, C., Adv. Funct. Mater. 14, 856 (2004).10.1002/adfm.200305082Google Scholar
14 Look, D. C., Coskun, C., Claflin, B. and Farlow, G. C., Physica B: Condensed Matter 340-342, 32 (2003).10.1016/j.physb.2003.09.188Google Scholar
15 Wang, Y. W., Zhang, L. D., Wang, G. Z., Peng, X. S., Chu, Z. Q. and Liang, C. H., J. Cryst. Growth 234, 171 (2002).10.1016/S0022-0248(01)01661-XGoogle Scholar
16 Olrloff, J., Utlaut, M. and Swanson, L., High Resolution Focused Ion Beams: FIB and Its Applications, Kluwer Academic/Plenum Publishers, New York, NY (2003).10.1007/978-1-4615-0765-9Google Scholar
17 Yang, J., Li, S., Li, Z. W., McBean, K. and Phillips, M. R., J. Phys. Chem. C 112, 10095 (2008).10.1021/jp802814cGoogle Scholar
18 Biersack, L. G. H. J. P., Nucl. Instrum. Methods 174, 257 (1980).10.1016/0029-554X(80)90440-1Google Scholar
19 Weissenberger, D., Duerrschnabel, M., Gerthsen, D., Perez-Willard, F., Reiser, A., Prinz, G. M., Feneberg, M., Thonke, K. and Sauer, R., Appl. Phys. Lett. 91, 132110 (2007).10.1063/1.2791006Google Scholar
20 Djuriscaroni, A., and Leung, Y. H., Small 2, 944 (2006).Google Scholar
21 Shalish, I., Temkin, H. and Narayanamurti, V., Phys. Rev. B 69, 245401 (2004).10.1103/PhysRevB.69.245401Google Scholar
22 Kaul, A. R., Gorbenko, O. Y., Botev, A. N. and Burova, L. I., Superlattices and Microstructures 38, 272 (2005).10.1016/j.spmi.2005.08.004Google Scholar
23 Shirakata, S., Sakemi, T., Awai, K. and Yamamoto, T., Thin Solid Films 451-452, 212 (2004).10.1016/j.tsf.2003.10.093Google Scholar
24 Matsui, H., Saeki, H., Tabata, H. and Kawai, T, Jpn. J. Appl. Phys. 42, 5494 (2003).10.1143/JJAP.42.5494Google Scholar
25 Zhou, M. J., Zhu, H. J., Jiao, Y., Rao, Y. Y., Hark, S. K., Liu, Y., Peng, L. M. and Li, Q., J. Phys. Chem. C 113, 8945 (2009)10.1021/jp901025aGoogle Scholar