Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T06:48:15.706Z Has data issue: false hasContentIssue false

Monte Carlo Calculation of Hole Transport in Bulk Zincblende Phase of GaN including a Pseudopotential Calculated Band Structure

Published online by Cambridge University Press:  21 February 2011

I. H. Oguzman
Affiliation:
School of ECE, Georgia Tech, Atlanta, GA 30332, ismail@risc2.mirc.gatech.edu
J. Kolnik
Affiliation:
School of ECE, Georgia Tech, Atlanta, GA 30332, ismail@risc2.mirc.gatech.edu
K.F. Brennan
Affiliation:
School of ECE, Georgia Tech, Atlanta, GA 30332, ismail@risc2.mirc.gatech.edu
R. Wang
Affiliation:
Department of EE, University of Minnesota, Minneapolis, MN 55455
P. P. Ruden
Affiliation:
Department of EE, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

In this paper, we present ensemble Monte Carlo based calculations of the steady state hole transport properties, i.e. average energy, drift velocity, and band occupancy of zincblende GaN. The Monte Carlo calculation includes the full details of the valence bands and a numerically determined scattering rate derived from an empirical pseudopotential calculation. Calculations are made for electric field strengths up to 1000 kV/cm. It is found that the average hole energies are much lower than the corresponding electron energies at comparable electric field strengths, and that some anisotropy in the drift velocity and average energy appears at the higher fields examined here.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Khan, M. A., Skogman, R. A. and Van Hove, J. M., Appl. Phys. Lett. 56, 1257 (1990).Google Scholar
2 Khan, M. A., Kuznia, J. N., Olson, D. T., George, T. and Pike, W. T., Appl. Phys. Lett. 63, 3470 (1993).Google Scholar
3 Khan, M. A., Kuznia, J. N., Olson, D. T., Schaff, W. J., Burm, J. W. and Shur, M. S., Appl. Phys. Lett. 65, 1121 (1994).Google Scholar
4 Nakamura, S., Senoh, M. and Mukai, T., Appl. Phys. Lett. 62, 2390 (1993).Google Scholar
5 Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992) and references therein.Google Scholar
6 Das, P. and Ferry, D. K., Solid-State Electron. 19, 851 (1976).Google Scholar
7 Littlejohn, M. A., Hauser, J. R. and Glisson, T. H., Appl. Phys. Lett. 26, 625 (1975).Google Scholar
8 Mansour, N. S., Kim, K. W. and Littlejohn, M. A., J. Appl. Phys. 77, 2834 (1995).Google Scholar
9 Gelmont, B., Kim, K. and Shur, M., J. Appl. Phys. 74, 1818 (1993).Google Scholar
10 Kolnik, J., Oguzman, I. H., Brennan, K. F., Wang, R., Ruden, P. P. and Wang, Y., J. Appl. Phys. 78, 1033 (1995).Google Scholar
11 Fischetti, M. V. and Laux, S. E., Phys. Rev. B 38, 9721 (1988).Google Scholar
12 Hinckley, J. M. and Singh, J., Phys. Rev. B 41, 2912 (1990).Google Scholar
13 Sano, N. and Yoshii, A., Phys. Rev. B 45, 4171 (1992).Google Scholar
14 Stobbe, M., Redmer, R. and Schattke, W., Phys. Rev. B 49, 4494 (1994).Google Scholar
15 Chang, Y. C., Ting, D. Z.-Y., Tang, J. Y. and Hess, K., Appl. Phys. Lett. 42, 76 (1983).Google Scholar