Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T06:22:22.704Z Has data issue: false hasContentIssue false

Multiscale Analysis of Interfacial Stability and Misfit Dislocation Formation in Layer-By-Layer Semiconductor Heteroepitaxy

Published online by Cambridge University Press:  10 February 2011

L. A. Zepeda-Ruiz
Affiliation:
Dept. of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080
D. Maroudas
Affiliation:
Dept. of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080
W. H. Weinberg
Affiliation:
Dept. of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080
Get access

Abstract

A theoretical analysis based on continuum elasticity theory and atomistic simulations is presented of the interfacial stability with respect to misfit dislocation formation, the strain fields, and the film surface morphology during layer-by-layer semiconductor heteroepitaxy. The energetics of the transition from a coherent to a semicoherent interface consisting of a misfit dislocation network, the structure of this semicoherent interface, the resulting strain fields and the morphological characteristics of the epitaxial film surfaces are calculated for InAs/GaAs(111)A. Continuum elasticity is found to describe the atomistic simulation results very well. Our theoretical results are discussed in the context of recent experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bressler-Hill, V., Lorke, A., Varma, S., Petroff, P. M., Pond, K., and Weinberg, W. H., Phys. Rev. B 50, 8479 (1994); V. Bressler-Hill, S. Varma, A. Lorke, B. Z. Nosho, and W. H. Weinberg, Phys. Rev. Lett. 74, 3209 (1995).Google Scholar
[2] Zhang, X. M., Pashley, D. W., Hart, L., Neave, J. H., Fawcett, P. N., and Joyce, B. A., J. Crystal Growth 131, 300 (1993).Google Scholar
[3] Belk, J. G., Sudijono, J. L., Zhang, X. M., Neave, J. H., Jones, T. S., and Joyce, B. A., Phys. Rev. Lett. 78, 475 (1997).Google Scholar
[4] Maroudas, D., Zepeda-Ruiz, L. A., and Weinberg, W. H., Surf. Sci. 411, L865 (1998).Google Scholar
[5] Zepeda-Ruiz, L. A., Maroudas, D., and Weinberg, W. H., J. Appl. Phys. 85, in press.Google Scholar
[6] Yamaguchi, H., Belk, J. G., Zhang, X. M., Sudijono, J. L., Fahy, M. R., Jones, T. S., Pashley, D. W., and Joyce, B. A., Phys. Rev. B 55, 1337 (1997).Google Scholar