Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T00:59:53.295Z Has data issue: false hasContentIssue false

Multispectral Refractive Index Sensing Using Surface Plasmon Resonance on Gold Nanoslits

Published online by Cambridge University Press:  01 February 2011

Pei-Yu Chung
Affiliation:
pinkychung668@ufl.edu, University of Florida, Materials Science and Engineering, Gainesville, Florida, United States
Kuang-Li Lee
Affiliation:
kllee@gate.sinica.edu.tw, Academia Sinica, Research Center for Applied Sciences, Taipei, Taiwan, Province of China
Gregory Schultz
Affiliation:
schultzg@obgyn.ufl.edu, University of Florida, Obstetrics and Gynecology, Gainesville, Florida, United States
Pei-Kuen Wei
Affiliation:
pkwei@gate.sinica.edu.tw, Academia Sinica, Research Center for Applied Sciences, Taipei, Taiwan, Province of China
Christopher Batich
Affiliation:
cbati@mse.ufl.edu, University of Flordia, Materials Science and Engineering, Gainesville, Florida, United States
Get access

Abstract

Surface plasmon resonance (SPR) biosensors are widely used in sensitive chemical, biological and environmental sensing. Recently, the studies of nano-plasmonics in metallic structures have shown that surface plasmons can also be excited by the metallic nanostructures films which can be used for high-throughput and chip-based SPR type sensing. We developed a class of plasmonic crystal-like structures consisting of a film with arrays of periodic nanoslit geometry. Because the engineered array ensures multiple resonance modes, we use the multispectral analysis to evaluate the refractive index sensing capability. Different from the common method monitoring a single peak shift, the multispectral analysis, observing all the peak shifts and intensity changes in the multiple plasmonic resonances in the spectra, can improve the signal-to-noise ratio of the system and enhance the sensing capabilities. In this investigation, we studied the best condition for the gold nanoslit arrays by testing their ability for refractive index sensing, and a high sensitivity of up to 28586 %T nm/RIU was obtained by multispectral analysis (RIU = refreactive index unit, and T= transmission).

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Homola, J. Yee, S. S. and Gauglitz, G. n. Sensors and Actuators B: Chemical 54, 1-2 (1999).Google Scholar
2 Liedberg, B. Nylander, C. and Lunstr'm, I., Sensors and Actuators 4, (1983).10.1016/0250-6874(83)85036-7Google Scholar
3 Yu, X. Xu, D. and Cheng, Q. Proteomics 6, 20 (2006).Google Scholar
4 Bardin, F. Bellemain, A. Roger, G. and Canva, M. Biosens Bioelectron 24, 7 (2009).10.1016/j.bios.2008.10.023Google Scholar
5 Hoogenboom, J. P. Sanchez-Mosteiro, G., Francs, G. Colas des, Heinis, D. Legay, G. Dereux, A. and van, N. F. Hulst, Nano Lett 9, 3 (2009).Google Scholar
6 Hook, A. L. Thissen, H. and Voelcker, N. H. Langmuir 25, 16 (2009).10.1021/la900735nGoogle Scholar
7 Lotierzo, M. Henry, O. Y. Piletsky, S. Tothill, I. Cullen, D. Kania, M. Hock, B. and Turner, A. P., Biosens Bioelectron 20, 2 (2004).10.1016/j.bios.2004.01.032Google Scholar
8 Mannelli, I. Lecerf, L. Guerrouache, M. Goossens, M. Millot, M. C. and Canva, M. Biosens Bioelectron 22, 6 (2007).10.1016/j.bios.2006.02.022Google Scholar
9 Stewart, M. E. Yao, J. Maria, J. Gray, S. K. Rogers, J. A. and Nuzzo, R. G. Anal Chem (2009).Google Scholar
10 Wegner, G. J. Wark, A. W. Lee, H. J. Codner, E. Saeki, T. Fang, S. and Corn, R. M. Anal Chem 76, 19 (2004).10.1021/ac0494275Google Scholar
11 Ji, J. O'Connell, J. G., Carter, D. J. and Larson, D. N. Anal Chem 80, 7 (2008).Google Scholar
12 Im, H. Lesuffleur, A. Lindquist, N. C. and Oh, S. H. Anal Chem 81, 8 (2009).10.1021/ac802276xGoogle Scholar
13 Gao, H. Henzie, J. and Odom, T. W. Nano Lett 6, 9 (2006).Google Scholar