Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T01:14:11.406Z Has data issue: false hasContentIssue false

Nanomachining Graphene with Ion Irradiation

Published online by Cambridge University Press:  01 February 2011

Jani Kotakoski
Affiliation:
jani.kotakoski@iki.fi, University of Helsinki, Department of Physics, Helsinki, Finland
Ossi Lehtinen
Affiliation:
ossi.lehtinen@helsinki.fi, University of Helsinki, Department of Physics, Helsinki, Finland
Get access

Abstract

We present molecular dynamics simulations using both empirical potentials (EP) and density functional theory (DFT) on ion irradiation of graphene. The comparison between the two methods shows that EP gives not only qualitatively but also quantitatively reasonable estimates of defect production during ion irradiation in carbon nanosystems. Ion irradiation is shown to give rise to a range of interesting defects e.g. single, double and triple vacancies, bond rotations, close-by Frenkel pairs and more complex defect structures. We show that the creation of these defects is related to the atomic processes upon the ion impact, and define the critical irradiation angles both for maximum damage and no penetration as a function of the ion mass.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Geim, A. K. and Novoselov, K. S., Nat Mater 6, 183 (2007).Google Scholar
2 Neto, A. H. Castro, Guinea, F., Peres, N. M. R., Novoselov, K. S., and Geim, A. K., Rev. Mod. Phys. 81, 109 (2009).Google Scholar
3 Cao, H., Yu, Q., Colby, R., Pandey, D., Park, C. S., Lian, J., Zemlyanov, D., Childres, I., Drachev, V., Stach, E. A., et al., Journal of Applied Physics 107, 044310 (pages 7) (2010).Google Scholar
4 Chen, J.-H., Cullen, W. G., Jang, C., Fuhrer, M. S., and Williams, E. D., Physical Review Letters 102, 236805 (2009).Google Scholar
5 Compagnini, G., Giannazzo, F., Sonde, S., Raineri, V., and Rimini, E., Carbon 47, 3201 (2009).Google Scholar
6 Stolyarova, E., Stolyarov, D., Bolotin, K., Ryu, S., Liu, L., Rim, K. T., Klima, M., Hybertsen, M., Pogorelsky, I., Pavlishin, I., et al., Nano Letters 9, 332 (2009).Google Scholar
7 Giannazzo, F., Sonde, S., Raineri, V., and Rimini, E., Applied Physics Letters 95, 263109 (2009).Google Scholar
8 Tapasztó, L., Dobrik, G., Nemes-Incze, P., Vertesy, G., Lambin, P., and Bir, L. P., Phys. Rev. B 78, 233407 (2008).Google Scholar
9 Kresse, G. and ΢ller, J. Furthm, Comput. Mat. Sci. 6, 15 (1996).Google Scholar
10 Blöchl, P. E., Phys. Rev. B 50, 17953 (1994).Google Scholar
11 Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
12 Delley, B., The Journal of Chemical Physics 92, 508 (1990).Google Scholar
13 Zobelli, A., Gloter, A., Ewels, C. P., Seifert, G., and Colliex, C., Phys. Rev. B 75, 245402 2007).Google Scholar
14 Kotakoski, J., Krasheninnikov, A. V., Ma, Y. C., Foster, A. S., Nordlund, K., and Nieminen, R. M., Physical Review B 71, 205408 (2005).Google Scholar
15 Kotakoski, J., Krasheninnikov, A., and Nordlund, K., Nucl. Instr. Meth. Phys. B 240, 810 (2005).Google Scholar
16 Kotakoski, J. and Nordlund, K., New Journal of Physics 8, 115 (2006).Google Scholar
17 Kotakoski, J., Krasheninnikov, A. V., and Nordlund, K., Radiation Effects and Defects in Solids 162, 157 (2007).Google Scholar
18 Tolvanen, A., Kotakoski, J., Krasheninnikov, A. V., and Nordlund, K., Applied Physics Letters 91, 173109 (2007).Google Scholar
19 Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B., and Sinnott, S. B., J. Phys.: Condens. Matter 14, 783 (2002).Google Scholar
20 Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Matter (Pergamon, USA, 1985).Google Scholar
21 Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F. van, DiNola, A., and Haak, J. R., J. Chem. Phys. 81, 3684 (1984).Google Scholar
22 Lehtinen, O., Kotakoski, J., Krasheninnikov, A., Tolvanen, A., Nordlund, K., and Keinonen, J., Phys. Rev. B 81, in press (2010).Google Scholar
23 Hobler, G., Radiation Effects and Defects in Solids 139, 21 (1996).Google Scholar
24 Krasheninnikov, A. V. and Nordlund, K., Phys. Rev. B 71, 245408 (2005).Google Scholar