Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T13:58:54.475Z Has data issue: false hasContentIssue false

Nanopatterning and plasmonic properties of plasma sputtered gold on diatom frustules

Published online by Cambridge University Press:  21 March 2013

Julien Romann
Affiliation:
Department of Material Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim - NORWAY
Mari-Ann Einarsrud*
Affiliation:
Department of Material Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim - NORWAY
Get access

Abstract

Bio-silica nanostructures from diatoms (called frustules) featuring plasmonic gold nanoparticles (NPs) are elaborated using two methods based on plasma sputtering of gold. The first investigated method uses a thermal treatment to induce the thermal dewetting of a plasma sputtered gold layer on the diatom frustules. The second method first consists of coating the frustules with polyethylene glycol before sputtering gold on these frustules. For both methods, the amount of gold appears to be a key parameter regarding the final obtained layer, which can either be nanostructured by cavities or consist in individual gold NPs. For an amount of sputtered gold equivalent to form a 5 nm thick layer, both methods allow obtaining diatom frustules covered by gold NPs with a size around 20 nm and a narrow size distribution. The UV-visible characterization of the diatom frustules featuring gold NPs highlights a plasmon extinction band in agreement with individual gold NPs with a size below 25 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amendola, V., Meneghetti, M., J. Phys. Chem. C 113, 4277 (2009)CrossRefGoogle Scholar
Bosman, M., Keast, V.J., Watanabe, M., Maaroof, A.I., Cortie, M.B., Nanotechnol. 18, 165505 (2007)CrossRefGoogle Scholar
Cortie, M.B., Stokes, N., McDonagh, A., Photonic Nanostruct. 7, 143 (2009)CrossRefGoogle Scholar
Dionne, J.A., Atwater, H.A., MRS Bulletin 37 August 2012, 717 (2012)CrossRefGoogle Scholar
Girard, C., Dujardin, E., Baffou, G., Quidant, R., New J. Phys. 10, 105016 (2008)CrossRefGoogle Scholar
Hutter, E., Fendler, J.H., Adv. Mater. 16, 1685 (2004)CrossRefGoogle Scholar
Nomura, K., Ohki, Y., Fujimaki, M., Wang, X., Awazu, K., Komatsubara, T., Nanotechnol. 20, 475306 (2009)CrossRefGoogle Scholar
Petersen, T.C., Bosman, M., Keast, V.J., Anstis, G.R., Appl. Phys. Lett. 93, 101909 (2008)CrossRefGoogle Scholar
Sharma, V., Park, K., Srinivasarao, M., Mater. Sci. Eng. R 65, 1 (2009)CrossRefGoogle Scholar
Andrews, M.P., Hajiaboli, A., Hiltz, J., Gonzalez, T., Singh, G., Lennox, R.B., Proc. SPIE 7946, 79461S (2011)CrossRefGoogle Scholar
Gordon, R., Losic, D., Tiffany, M.A., Nagy, S.S., Sterrenburg, F.A.S., Trends Biotechnol. 27-2, 116 (2008)CrossRefGoogle Scholar
Losic, D., Mitchell, J.G., Voelcker, N.H., Adv. Mater. 21, 2947 (2009)CrossRefGoogle Scholar
De Stefano, L., Rea, I., Rendina, I., De Stefano, M., Moretti, L., Opt. Express 15-26, 18082 (2007)CrossRefGoogle Scholar
De Stefano, L., Rotiroti, L., De Stefano, M., Lamberti, A., Lettieri, S., Setaro, A., Maddalena, P., Biosens. Bioelectron. 24, 1580 (2008)CrossRefGoogle Scholar
Fuhrmann, T., Landwehr, S., El Rharbi-Kucki, M., Sumper, M., Appl. Phys. B 78, 257 (2004)CrossRefGoogle Scholar
De Tommasi, E., Rea, I., Mocella, V., Moretti, L., De Stefano, M., Rendina, I., De Stefano, L., Opt. Express 18-12, 12203 (2010)CrossRefGoogle Scholar
Vukusic, P., Sambles, J.R., Nature 424, 852 (2003)CrossRefGoogle Scholar
Wang, D., Ji, R., Schaaf, P., Beilstein J. Nanotechnol. 2, 318 (2011)CrossRefGoogle Scholar
Link, S., El-Sayed, M., J. Phys. Chem. B 103, 4212 (1999)CrossRefGoogle Scholar