Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T21:25:36.660Z Has data issue: false hasContentIssue false

Nanosphere lithography of nanostructured silver films on thin-film silicon solar cells for light trapping

Published online by Cambridge University Press:  31 January 2011

Birol Ozturk
Affiliation:
biozturk@syr.edu, Syracuse University, Physics, Syracuse, New York, United States
Eric A Schiff
Affiliation:
easchiff@syr.edu, Syracuse University, Physics, Syracuse, New York, United States
Hui Zhao
Affiliation:
hzhao01@physics.syr.edu, Syracuse University, Physics, Syracuse, New York, United States
Subhendu Guha
Affiliation:
sguha@uni-solar.com, United States
Baojie Yan
Affiliation:
byan@uni-solar.com, United Solar Ovonic LLC, Troy, Michigan, United States
Jeff Yang
Affiliation:
jyang@uni-solar.com, United Solar Ovonic LLC, Troy, Michigan, United States
Get access

Abstract

Sparse arrays of evaporated silver nanodiscs were fabricated with nanosphere lithography (NSL) on glass substrates and on hydrogenated nanocrystalline silicon solar cells. The optical transmittance spectra for arrays on glass vary substantially with film thickness, and were reasonably consistent with previous work. The quantum efficiency spectra of hydrogenated nanocrystalline silicon solar cells show spectral shifts due to coupling of surface plasmons in the metal nanodiscs to the planar waveguide modes of the cells, with overall photocurrent enhancement up to 10%.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Stuart, H.R. and Hall, D.G., App. Phys. Lett. 69, 2327(1996)Google Scholar
2 Derkacs, D. Lim, S. H. Matheu, P. Mar, W. and Yu, E. T. Appl. Phys. Lett. 89, 093103(2006)Google Scholar
3 Pillai, S. Catchpole, K. R. Trupke, T. Green, M. A. J. Appl. Phys. 101, 093105(2007)Google Scholar
4 Matheu, P. Lim, S. H. Derkacs, D. McPheeters, C. and Yu, E. T. Appl. Phys. Lett. 93, 113108(2008)Google Scholar
5 Yablonovitch, E, Cody, GD., IEEE Transactions on Electron Devices, ED-29, no.2, 300(1982)Google Scholar
6 Bohren, C. F. and Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983) p.309 Google Scholar
7 Hägglund, C., Zäch, M., Petersson, G. Kasemo, B. Appl. Phys. Lett. 92, 053110(2008)Google Scholar
8 Utegulov, Z. N. Shaw, J. M. Draine, B. T. Kim, S. A. Johnson, W. L. Proc. SPIE 6641, 66411M (2007)Google Scholar
9 Jensen, T. R. Malinsky, M. Duval, Haynes, C. L. Duyne, R. P. Van, J. Phys. Chem. B, 104, 10549(2000)Google Scholar
10 Hulteen, J.C.; Duyne, R.P. Van, J. Vac. Sci. Technol. A 13, 1553 (1995)Google Scholar
11 Prevo, B.G. and Velev, O.D., Langmuir 20, 2099(2004)Google Scholar
12 Wang, Y. Chen, L. Yang, H. Guo, Q. Zhou, W. Tao, M. Sol. Energy Mater. Sol. Cells, 93, 85(2008)Google Scholar
13 Hulteen, J. C. Treichel, D. A. Smith, M. T. Duval, M. L. Jensen, T. R. Duyne, R. P. Van, J. Phys. Chem. B 103, 3854(1999)Google Scholar
14 Yan, B. Yue, G. Yang, J. Guha, S. Williamson, D. L. Han, D. Appl. Phys. Lett. 85, 1955(2004).Google Scholar
15 Lim, S. H. Mar, W. Matheu, P. Derkacs, D. and Yu, E. T. J. Appl. Phys. 101, 104309(2007).Google Scholar