Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-07T19:25:07.974Z Has data issue: false hasContentIssue false

The Nd-nanocluster Coupling Strength and its Effect in Excitation/de-excitation of Nd3+ Luminescence in Nd-doped Silicon-rich Silicon Oxide

Published online by Cambridge University Press:  10 February 2011

Se-Young Seo
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373-1∼Kusung-dong, Yusung-gu, Taejon, Korea
Jung H. Shin
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373-1∼Kusung-dong, Yusung-gu, Taejon, Korea
Get access

Abstract

The Nd-nanocluster Si (nc-Si) coupling strength and its effect in excitation/de-excitation of Nd3+ luminescence in Nd-doped silicon-rich silicon oxide (SRSO) is investigated. Nd-doped SRSO thin films, which consist of nc-Si embedded inside a SiO2 matrix, were prepared by electron-cyclotron-resonance plasma enhanced chemical vapor deposition (ECR-PECVD) of SiH4 and O2 with co-sputtering of Nd and subsequent anneal at 950 °C. Efficient Nd3+ luminescence with moderate temperature quenching is observed. Based on the temperature dependence of Nd3+ luminescence lifetime, a coupling strength between nc-Si and Nd that is strong enough to result in efficient excitation of Nd3+ via quantum confined excitons while weak enough to result in a small back-transfer rate is identified as the key to Nd3+ luminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.See, for example, Mater. Res. Soc. Symp. Proc. 422 (1996).Google Scholar
2. Kenyon, A. J., Trwoga, P. F., Federighi, M., and Pitt, C. W.. J. Phys.: Condens. Matter 6, L319 (1994).Google Scholar
3. Shin, J. H., Kim, M., Seo, S., and Lee, C., Appl. Phys. Lett. 72 1092 (1998).Google Scholar
4. Franzò, G., Vinciguerra, V., and Priolo, F., Appl. Phys. A, 69, 3 (1999).Google Scholar
5. Yassievich, I. N. and Kimerling, L. C., Semicond. Sci. Tech., 8, 718 (1993).Google Scholar
6. Kik, P. G., Dood, M. J. A. de, Kikoin, K., and Polman, A., Appl. Phys. Lett. 70, 1721 (1997).Google Scholar
7. Taguchi, A. and Takahei, K., J. Appl. Phys., 79, 4330 (1996).Google Scholar
8. Favennec, P. N., L'Haridon, H., Moutonnet, D., Salvi, M., and Ganneau, M., Mat. Res. Soc. Symp. Proc., 301, 181 (1993).Google Scholar
9. Delerue, C., Allan, G., and Lannoo, M., Light Emission in Silicon: From Physics to Devices, Semicond. Semimet. 49, 253 (Academic, New York, 1998).Google Scholar
10. Dejima, T., Saito, R., Yugo, S., Isshiki, H., and Kimura, T., J. Appl. Phys., 84, 1036 (1998).Google Scholar
11. Shin, J. H., Jhe, J., Seo, S., Ha, Y., and Moon, D., Appl. Phys. Lett., 76, 3567 (2000).Google Scholar
12. Iacona, F., Franzò, G., and Spinella, C., J. Appl. Phys., 87, 1295 (2000).Google Scholar
13. Taniguchi, M., Nakagome, H., and Takahehei, K., Appl. Phys. Lett., 58, 2930 (1991).Google Scholar
14. Watanabe, K., Fujii, M., and Hayashi, S., J. Appl. Phys., 90, 4761 (2001).Google Scholar
15. Priolo, F., Franzò, G., Pacifici, D., Vinciguerra, V., Iacona, F., and Irrera, A., J. Appl. Phys., 89, 264 (2001).Google Scholar
16. Taguchi, A., Takahei, K., Matsuoka, M. and Tohno, S., J. Appl. Phys., 84, 4471 (1998).Google Scholar
17. Brongersma, M. L., Kik, P. G., Polman, A., Min, K. S., and Atwater, Harry A., Appl. Phys. Lett., 76, 351 (2000).Google Scholar